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1 Research Background

Satellite Laser Ranging (SLR)

The Satellite Laser Ranging (SLR) system precisely measures the round-trip time interval t of a laser

pulse between the observation station and the satellite, enabling the calculation of the distance

between them. R = %t

Satellite Laser Ranging
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1 Research Background

System Delay
SLR data includes system delay, typically regarded as a whole, which is derived and subtracted

through ground target measurements.
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1 Research Background

Steps for Target Calibration

@® Control the telescope to point at a known ground target.

@ Measure the distance to the ground target.

@ Calculate the difference between the actual distance and the measured distance.

@ Rectify system delay.
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1 Research Background

Existing Target Delay Measurement Technologies

Distant Targets:
» Require atmospheric delay corrections,

» Present significant challenges in maintenance and management, as well as targeting.

Near Targets:
» Avoid the atmospheric effects;
» (Calibration of ground targets and satellite observations cannot be performed simultancously.

» A large amount of observational data corresponds to only one ground target value, failing to meet

the real-time and effective calibration requirements for system delay.
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1 Research Background

Target Calibration Stability

In 2022: relatively stable, some abnormal jumps.

In 2023: larger change range, more jumps and fluctuations.
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The low accuracy and stability of ground target value
lead to the instability of SLR data quality.
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1 Research Background

Real-Time Correction Method for System Delay
In 2019, An Ning and and colleagues from the Changchun Satellite Observation Station designed a

real-time calibration, but this solution necessitated modifications to the telescope's' barrel, making it

difficult to extend to other ranging systems.

In the same year, He Zhengbin and colleagues proposed a system delay prediction method based on
ARMA time series analysis. However, time series analysis relies on fixed time intervals, which
complicates data collection and processing. Additionally, it can only predict delay values at fixed

intervals, failing to accommodate predictions at arbitrary time.

Therefore, we propose a real-time prediction method

based on Window Incremental Forest.
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2 Analysis of Factors Affecting System Delay

Laser Ranging Equation
According to the laser ranging equation, various factors contribute to the system delay in laser ranging
systems, including optical delays, electrical delays, and photoelectric conversion delays.
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Impact of Meteorological Parameters on System Delay

Temperature variations Light scattering

Humidity variations |msssmp | Atmospheric refractive index | mum—) system

delay

Pressure variations Gas absorption
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2 Analysis of Factors Affecting System Delay

Impact of Meteorological Parameters on System Delay
By observing the variations in system delay and meteorological parameters, regular patterns in daily

changes of temperature(T), humidity(H), pressure(P), and system delay (D)can be identified.
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2 Analysis of Factors Affecting System Delay

Sample Correlation Matrix Analysis

Correlation Matrix
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Sample Correlation Matrix Analysis
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3 Methods

Window Incremental Forest(WIF)

Features: Temperature, time, Pressure, Humidity

Labels: System Delay
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3 Methods

Window Increment(WI)

Within window k: Using observation results o;.;,; and measurement results D;.; ., _; to predict the

ground tyrget value D, at time t + k.

Model Stnategy: Z(Dtok | Otrkr Ditek—1)
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3 Methods

Window Increment
Window Increment: Within window k , perform difference operations on 0O, and D, ,compared

to Op.t4k—1\and Dy.pype—1-
Dt+k,t+i = ADt+k,t+i + Dt+i

Incremental Model: Otiktsi = AO¢ikt4i T Oy
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3 Methods

Window Incremental Forest

Random Forest Regression Learning Incremental Part:
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3 Methods

Window Incremental Forest
Temporal Integration: Take the mean of the k predicted values D, kt+i TTOM AO¢ i ¢4 and Dy to

obtain the predicted value at time t + k.

Dtk = EZ Dtk t+i Temporal Ensemble
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4 Experiments

Data Collection

System Delay: ground target measurements of the Kunming SLLR system.

Meteorological Parameters: Weather forecasts from meteorological parameter measuring

instruments.

Details: Ground target measurements are conducted approximately every hour, while weather
forecasts are updated every minute. The most recent weather forecast is used as the meteorological

parameter affecting the ground target measurement results.
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4 Experiments

Experimental Setup and Evaluation Criteria

Dataset Division: Training: Validation: Testing=6.4 : 1.6 : 2
Comparison Experiments: LR, SVR, DT, MLP, GBRF.

Evaluation Criteria: MSE, RMSE, MAE, R?, Adjusted R

2

] . L . 1 & .
MSE =—>"(y, - %)) ;RMSE:\/—Z(yi—yi) ;MAE =—>"|(y, - §)|
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(Y=Y, : 1-R*)(n-1
RZ:I—Z'(X' y')z;Rz_adjustedzl—( Jn-1)
2. Ti-y) n—p-1
Linear Regression(LR), Support Vector Regression(SVR), Decision Trees(DT), Multi-layer Perceptrons(MLP),
Gradient Boosted Regression Forests(GBRF).

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Coefficient of

Determination (R?), Adjusted Coefficient of Determination (Adjusted R?).
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4 Experiments

Experimental Results

Table 1: Comparison of System Delay Prediction Results

MSE /ps RMAE/ps MAE/ps R? R?_adjusted
LR 1016.6070 31.8843 24.5429 0.7108 0.6964
DTR 1044.6589 32.3212 23.6877 0.7028 0.6880
SVR 1061.5688 32.5817 25.2712 0.6980 0.6829
MLP 1016.6050 31.8842 24.5428 0.7108 0.7108
GBRF 920.3529 30.3373 23.6628 0.7382 0.7251
RFR 697.5677 26.4115 20.8563 0.8015 0.7916
WIF 382.6508 19.5614 15.5185 0.8791 0.8725
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4 Experiments

Experimental Results
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4 Experiments

Table 2: Analysis of Performance Improvement Reasons for WIF
RZ

R?_adjusted

Result Analysis
MSE /ps RMAE/ps MAE/ ps
RFR 697.5677 26.4115 20.8563 0.8015 0.7916
WI+RFR 755.8726 27.4931 21.4041 0.7612 0.7605
WIF 382.6508 19.5614 15.5185 0.8791 0.8725
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4 Experiments
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H_%_deta: 0.05220385361038928 Sample Correlation Matrix Analysis

Parameter Tuning Process and The contribution of temperature increment
» Suitable: around 0.78

» Over-fitting: more than 0.93
» Under-fitting: less than 0.73

» This provides a reference for the real contributions of each feature on system delay.
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5 Conclusion

Conclusion

The experimental results show that the methodology has good prediction performance. Consequently,
the Window Incremental Forest can effectively predict system delays, offering a robust solution for
monitoring the accuracy and stability of ground target measurements and thereby enhancing the

overall quality of SLR data.
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