# Estimation of the laser retro-reflector array center location for BEIDOU-3M



**<u>Objective</u>**: to study ways to improve the accuracy of ephemeris support for BEIDOU-3M SC on the basis of joint coordinated use (co-location) of SLR and radio measurements.

### **Publications on the subject from authors:**

1. V. Glotov, M. Zynkovsky, V. Mitrikas, A. Pafnutev (2015): GLONASS SCs laser range measures role in verification of data processing methods. IAC PNT analysis of GLONASS SCs laser ranging by worldwide station net.



#### IAC-COD, IAC-GFZ and IAC-SHA BEIDOU orbit comparison from MGEX web page



2. V. Glotov, V. Mitrikas, A. Pafnutev (2018): Estimation of the laser retroreflector array center location for GLONASS-M

#### **Relevance:**

- 1. ILRS stations have accumulated a large volume of laser measurements for the BEIDOU satellites, since 4 spacecrafts were included in the ILRS priority list.
- There is an improvement in the accuracy of a posteriori ephemeris information for BEIDOU-3M spacecraft and its consistency between various IGS analysis centers.
- 3. Work on co-location of different measurement and observation techniques is highly important in terms of results consistency and verification.

#### Initial data:

- 1. Time period: 01.01.2022 01.08.2024
- 2. Number of SLR stations in research 22
- 3. Stations coordinates taken from ITRF2014 solution
- 4. BEIDOU SC navigational antenna phase center offset from the ANTEX file recommended by the IGS.
- 5. Nominal LRA coordinates available on the ILRS web page
- 6. Number of BEIDOU SC in research: 4 (constantly were in the priority list)
- 7. Number of normal points total 25866
- 8. Number of normal points after filtration 25719

## GNSS data:

To perform integrated research four sets of precise ephemerids obtained a posteriori from the radio measurements in different IGS analysis centers (IAC, CODE, GFZ, SHA) were used as reference ephemeris data for BEIDOU-3M SC.



Residuals with IAC orbits, W ORMS = 30,8 mm

#### Estimated position of CAST SCs LRR



Axis Z, CAST SC

COD

🔴 GFZ

IAC

SHA

- TAB

1,27000

1,26000

1,24000

1,23000

1,22000

1,21000

5 1,20000

1,19000

E 1,25000

#### Axis Y, CAST SC 0,00000 -0,02000 -0,04000 COD 0,06000 🛑 GFZ -0,08000 IAC -0,10000 SHA -0,12000 **—** TAB -0,14000 -0,16000 Number of the spacecraft point in orbit



| SC PRN | IAC      |          |          | COD      |          |          | GFZ      |          |          | SHA      |          |          |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|        | ΔX, m    | ΔY, m    | ΔΖ, m    | ΔX, m    | ΔY, m    | ΔΖ, m    | ΔX, m    | ΔY, m    | ΔΖ, m    | ΔX, m    | ΔY, m    | ΔΖ, m    |
| 20     | 0,01387  | 0,01744  | -0,07108 | -0,00984 | 0,01363  | -0,05819 | -0,00380 | 0,04228  | -0,03318 | -0,03420 | -0,05115 | -0,05272 |
| 21     | 0,00264  | 0,00945  | -0,07105 | 0,02497  | 0,01178  | -0,05321 | 0,00739  | 0,01701  | -0,02346 | -0,02711 | 0,02511  | -0,05175 |
| 29     | -0,00283 | -0,01550 | -0,00009 | -0,00344 | -0,00845 | 0,01219  | 0,03918  | -0,01494 | 0,03310  | 0,00397  | -0,02455 | 0,06852  |
| 30     | -0,00479 | -0,02090 | 0,00001  | 0,00967  | -0,02729 | 0,01602  | 0,04502  | 0,00665  | 0,03770  | -0,01051 | 0,00968  | 0,06957  |

#### Estimated position of SECM SCs LRR

Residuals with GFZ orbits, W ORMS = 28,2 mm





Residuals with IAC orbits, W ORMS = 30,1 mm

0,44000

0,43500

0,43000

0,42500

0,42000

0,41500

0,41000

0,40500

0,40000

0,39500

28



COD

Residuals with GFZ orbits, W ORMS = 32,9 mm







