New RGG development for bistatic LLR system based on *cRIO* controller

Jian GAO (1), Xue DONG (1), He DONG(2), Xing-Wei HAN (1,3), Cheng-Zhi LIU(1,3)

- Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun, 130117, PR China
- 2. Jilin Normal University, Changchun, 136000, PR China
- 3. Key Laboratory of Space object and Debris Observation, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008, PR China

Contact: gaoj@cho.ac.cn

23RD INTERNATIONAL WORKSHOP ON LASER RANGING, OCTOBER, 2024

Outlines

- I. Why a new RGG
- II. Hardware composition
- III. Timing design
- IV. Software architecture
- V. Prediction sync
- VI. Backscatter avoidance
- VII. Range compensation
- VIII. Summary

Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences

Why a New RGG (Range Gate Generator)

New LLR system is under construction (Bistatic) Requires a customized RGG to meet the specific requirements.

- High repetition rate (ps)
- Low repetition rate (ns)

Four Detectors

- 532nm / 1064nm
 - SPADs (self-developed)

on both sides

Considering the control complexity, I/O expansion capability, and real-time performance, et al We choose NI Industrial cRIO controller for developing a highly integrated new RGG for LLR.

Hardware composition

The cRIO (CompactRIO) controller consists of a real-time processor, FPGA resources, and I/O expansion modules. (choose cost-effective cRIO-9054 as the control core)

Real-time processor (Intel Dual core, 1.33GHz, NI Linux RT)

Gate1 Out Gate2 Out Gate3 Ou Gate4 Ou

Two NI-9402 bidirectional DIO Module

- LVTTL level (Compatible with TTL input)
- I/O Propagation delay: 18ns(typical)

A highly integrated hardware solution with reliability, flexibility, easy to expand I/O features Only focus on embedded software development, not hardware (time saving)

Hardware composition

LVTTL to TTL level converter (based on high speed MOSFET driver)

Compatible with most of fire and gate trigger level and impedance

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN (<u>Note 8</u>)	TYP	MAX (<u>Note 8</u>)	UNITS
SWITCHING CHARAC	TERISTICS					
t _R	Driver Rise Time	Figure 2, OA, OB: CL = 100pF/1k 10% to 90%, VOH - VOL = 12V		1.2		ns
t _F	Driver Fall Time	Figure 2, OA, OB: CL = 100pF/1k 10% to 90%, VOH - VOL = 12V		1.4		ns
t _R	Driver Rise Time	Figure 2, OA, OB: CL = 1nF 10% to 90%, VOH - VOL = 12V		6.2		ns
t _F	Driver Fall Time	Figure 2, OA, OB: CL = 1nF 10% to 90%, VOH - VOL = 12V	2, OA, OB: CL = 1nF 6.9 90%, VOH - VOL = 12V			ns
tpdR	Input to Output Propagation Delay	Figure 3, load 100pF/1k		10.9		ns
tpdF	Input to Output Propagation Delay			10.7		ns
tpdR	Input to Output Propagation Delay	Figure 3, load 330pF		12.8		ns
tpdF	Input to Output Propagation Delay			12.5		ns
tpdR	Input to Output Propagation Delay	Figure 3, load 680pF		14.5		ns
tpdF	Input to Output Propagation Delay			14.1		ns

Timing design

RGG timing design: RT system UTC sync + FPGA timebase setup Reference Clock: Time & Frequency receiver(EndRun Meridian with PTP option)

- PTP Grandmaster timestamp accuracy: 8ns
- cRIO onboard oscillator: 100MHz (automatically synchronizes to IEEE 1588)
- The RT system can automatically maintain synchronization with UTC continuously

32bit 32bit second of day counter counter

- FPGA onboard oscillator: 40MHz (derived from the onboard 100 MHz oscillator and synchronized to it)
- FPGA timebase clock: 160MHz (timing resolution: 6ns); timebase:64bit counter
- 1PPS input: decimal second counter reset every pps rising edge
- Sufficient time resolution and accuracy for fire and gate control

Software architecture

RGG embedded software development includes real-time system and FPGA parts. LabVIEW graphical language for RT and FPGA programming. (high efficiency, good portability)

- UDP to exchange commands & data between RT and host IPC (good real-time performance)
- DMA FIFO to transfer timestamp sequence between RT and FPGA (high speed, bidirectional)

Prediction Sync

When the prediction files are generated on the host IPC from CPF to OB1, it is simultaneously synchronized to cRIO by FTP or WebDAV.

- cRIO-9054 has 4GB SSD, enough for prediction storage
- When switching target, prediction is entirely loaded in RT (Low latency, Unlimited arc length, large TB)
- OB1: binary, containing third-order interpolation coefficients
- Range calculation only involves addition and multiplication, tested average range calculation time is less than 10 µs

calculation time test.vi (crio_rgg.lvproj/l	NI-cRIO-9054-01EA1E7D)	-	\times
Period / us	Single calculation tim	e / us	
	Average calculation t	ime / us	
	6.17823		
	ob1 load time / us		
	688		

文件名 ^	文件大小	文件类型	最近修改	权限
tb_2024040918_39155.ob1	13,748	OB1 文件	2024/4/24	-rwxrw
tb_2024040918_39451.ob1	6,452	OB1 文件	2024/4/24	-rwxrw
tb_2024040918_41174.ob1	17,108	OB1 文件	2024/4/24	-rwxrw
tb_2024040918_43001.ob1	15,188	OB1 文件	2024/4/24	-rwxrw
tb_2024040918_43058.ob1	16,052	OB1 文件	2024/4/24	-rwxrw
tb_2024040918_44299.ob1	16,148	OB1 文件	2024/4/24	-rwxrw
tb_2024040918_44542.ob1	16,676	OB1 文件	2024/4/24	-rwxrw
tb_2024040918_53105.ob1	3,428	OB1 文件	2024/4/24	-rwxrw
tb_2024040919_01328.ob1	14,564	OB1 文件	2024/4/24	-rwxrw
tb_2024040919_16908.ob1	13,412	OB1 文件	2024/4/24	-rwxrw
tb_2024040919_32276.ob1	5,060	OB1 文件	2024/4/24	-rwxrw
tb_2024040919_32393.ob1	11,540	OB1 文件	2024/4/24	-rwxrw
tb_2024040919_36508.ob1	10,580	OB1 文件	2024/4/24	-rwxrw
tb_2024040919_40129.ob1	12,548	OB1 文件	2024/4/24	-rwxrw
tb_2024040919_44794.ob1	5,588	OB1 文件	2024/4/24	-rwxrw
tb_2024040919_48621.ob1	12,212	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_19751.ob1	11,108	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_36508.ob1	10,292	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_37867.ob1	10,628	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_37948.ob1	10,772	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_38077.ob1	16,580	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_39086.ob1	11,252	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_39227.ob1	9,476	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_40001.ob1	8,228	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_40889.ob1	9,716	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_41862.ob1	9,092	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_43207.ob1	9,764	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_43215.ob1	6,644	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_43706.ob1	10,244	OB1 文件	2024/4/24	-rwxrw
tb_2024040920_54031.ob1	7,892	OB1 文件	2024/4/24	-rwxrw
tb_2024040921_01328.ob1	14,468	OB1 文件	2024/4/24	-rwxrw
tb_2024040921_31698.ob1	8,180	OB1 文件	2024/4/24	-rwxrw
tb_2024040921_36605.ob1	8,180	OB1 文件	2024/4/24	-rwxrw
tb_2024040921_39086.ob1	10,964	OB1 文件	2024/4/24	-rwxrw
T +b 2024040921 40544 ob1	6 1 1 6	OB1 文件	2024/4/24	-muvnu
8318 个文件。大小总共: 101,483,902 字节	1			

Backscatter avoidance

5618.584000 5618.585000 5618.586000 5618.587000 5618.588152	0.000000 0.000000 0.000000 0.000000
5618.589152	0.000152
5618.590152	0.000152
5618.591152	0.000152
5618.592152	0.000152
5618.593152	0.000152
5618.594152	0.000152
5618.595152	0.000152
5618.596152	0.000152
5618.597152	0.000152
5618.598152	0.000152
5618.599000	0.000000
5618.600000	0.000000
5618.601000	0.000000
5618.602000 5618.603000 5618.604000 5618.605000 5618.605000	0.000000 0.000000 0.000000 0.000000
5618.607000	0.000000
5618.608000	0.000000
5618.609000	0.000000
5618.610152	0.000152
5618.611152	0.000152
5618.612152	0.000152
5618.613152	0.000152
5618.614152	0.000152
5618.615152	0.000152
5618.616152	0.000152
5618.617152	0.000152
5618.618152	0.000152
5618.619152	0.000152
5618.620152 5618.621000 5618.622000 5618.623000 5618.624000	0.000152 0.000000 0.000000 0.000000
	0.00000

Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences

Backscatter avoidance

- For the bistatic LLR system, backscatter avoidance parameter will be greatly reduced, appropriate backscatter avoidance parameter needs further calculating and testing.
 - FOV of T/R
 - Atmosphere
 - Laser pulse energy
 - Pointing angle
- The bistatic system also suitable for ultra high repetition rate ranging (100kHz or above)

Range compensation

- T prediction for both T / R range gate calculation, range gate for R need compensation
- System delay for T / R independently
- Range difference changes with AZ / EL
- Range compensation model: vector operation
- When tracking the target, the range compensation value is calculated and send to RT in real-time
- Max range gate compensation value: 30m

$$\rho_1 - \rho_2 = l\cos\theta$$

$$\rho_2 = \rho_1 - r_u^* \cdot r_d^* = \rho_1 - \left(d_{\rm E}\sin A\cos E + d_{\rm N}\cos A\cos E + d_{\rm U}\sin E\right)$$

Summary

- A new and alternate RGG solution using highly integrated cRIO controller
- Reliable, scalable, easy to maintain, applicable to other cRIO model
- Ready for 100kHz and above ultra high repetition rate ranging (<10µs range gate calculation time)
- Suitable for multi/array detector ranging system (up to 32 I/O channel)
- Suitable for highly automated ranging system (UTC sync by PTP)

Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences

Thanks for your attention

