Signal Transmission and Networking Improvements of the SLR Telescope Systems in Kunning Station

Xiaoyu Pi<sup>1,2</sup>, Honglin Fu<sup>1</sup>, Jingtao Li<sup>1</sup>

1. Yunnan Observatories, Chinese Academy of Sciences

2. University of Chinese Academy of Sciences





Oct.22, Kunming

# Outline

Introduction

Modularity and Scalability Improvements

**Signal Transmission Improvements** 

Networking and IoT Integration

Future outlook and Summary

# I. Introduction: SLR Telescopes of Kunming Station



The 53cm Binocularroutine SLR observationTime-to-time extra

experiments duty

The 1.2m Telescope

- DLR, LLR

 Multi-task experiment platform

> 1.2m Telescope Experiment platform 7820 (inactive)

53cm Binocular ILRS station: 7819

# I. Introduction: Challenges

Limitations:

- Outdated frame
- Fixed mechanical structure

Limited Resource

1

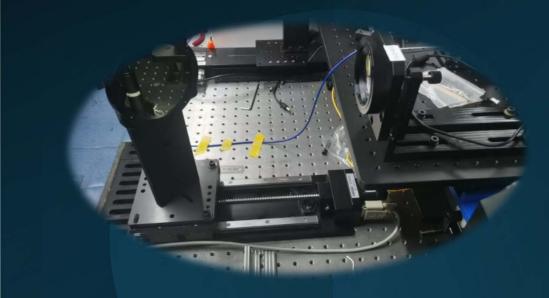
- Redundant cables
- Mono-task oriented design

Needs:

Greedy Needs

- New devices mounting
- High performance
- Automation oriented
- Multi-task oriented
- Universal interfaces
- Long distance signal transmission

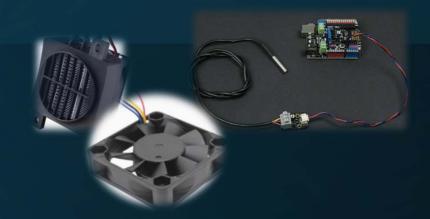
# II. Modularity and Scalability Improvements


### **Modular Optical Frame**

Camera Optic structure SPAD detector Temp control

- + Flexible+ Packed design
- Complex routingInstallation difficulties



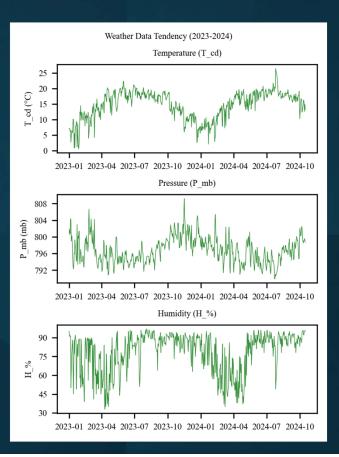

# II. Modularity and Scalability Improvements



### Shifting Platforms and Fast Steering Mirrors:

- + fast switch between functions: night daytime
- + accurate positioning/pointing
- Size of servo/power/comm. parts
- Routing

- Sensors/Heaters/Coolers + Static temp. inside + overall sys. Info. Feedback
- + close-loop
- Extra power/comm. part




# **III. Signal Transmission Improvements**

High performance co-ax cable (25m length, 12G BW) Key requirements:

- Propagation latency
- Stability







# (temperature -40°C~50°C)

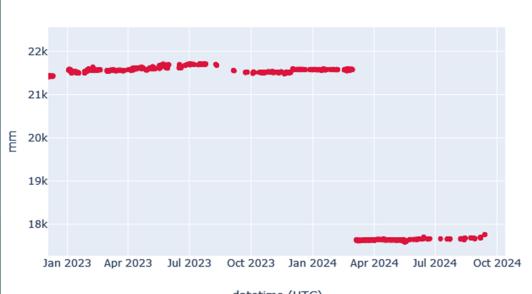
### 10MHz signal transmission stability

| Freq/Hz |             | Std. dev/Hz    |     | Stability      |           |
|---------|-------------|----------------|-----|----------------|-----------|
| 10.0M   |             | 1.4k           |     | 0.14‰          |           |
|         |             |                |     |                |           |
|         | Sampl       | Sample cable A |     | Sample cable B |           |
| Temp    | Std. dev/Hz | Stability      | Std | . dev/Hz       | Stability |
| 50°C    | 2.39k       | 0.24‰          |     | 2.60k          | 0.26‰     |
| 24.4°C  | 2.33k       | 0.23‰          |     | 2.37k          | 0.24‰     |
| 0°C     | 2.20k       | 0.22‰          |     | 2.23k          | 0.23‰     |
| -40°C   | 1.84k       | 0.18‰          |     | 1.87k          | 0.19‰     |

### Signal transmission Latency

|        | Sample cable A |            | Sample cable B |            |  |
|--------|----------------|------------|----------------|------------|--|
| Temp   | Latency/ns     | Std.dev/ps | Latency/ns     | Std.dev/ps |  |
| 50°C   | 20.75          | 116        | 21.56          | 98         |  |
| 24.4°C | 20.80          | 90         | 21.61          | 92         |  |
| O°C    | 20.79          | 107        | 21.59          | 111        |  |
| -40°C  | 20.81          | 107        | 21.62          | 110        |  |

# **III. Signal Transmission Improvements**








### **Performance Improvement**

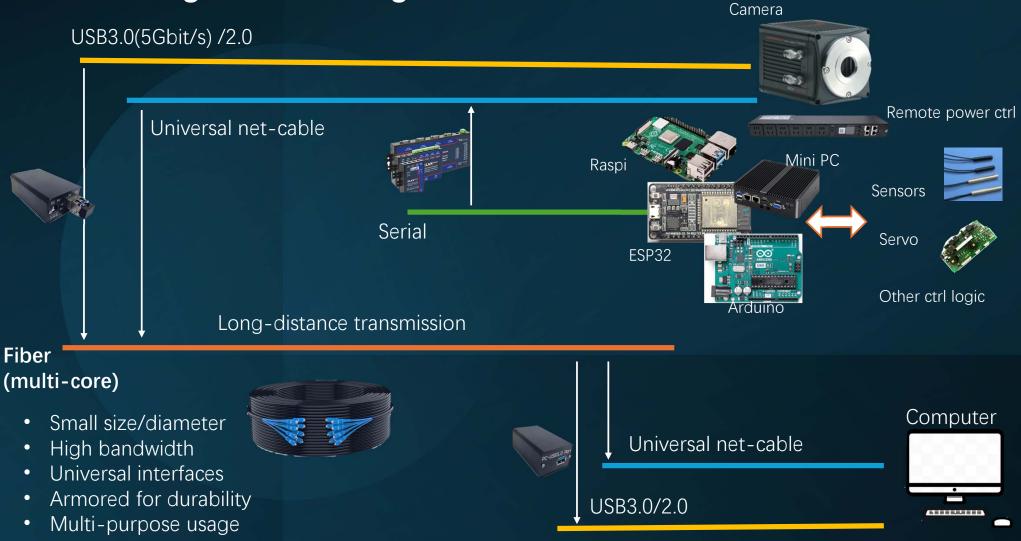
KUN2 Pass LAGEOS System Delay



datetime (UTC)

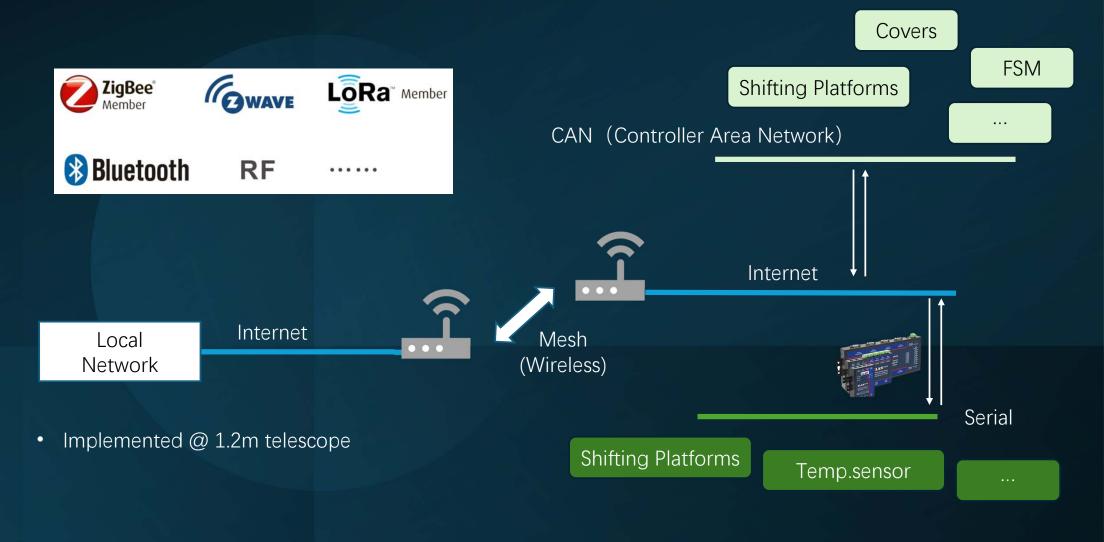
# **IV. Networking and IoT Integration: Analysis**



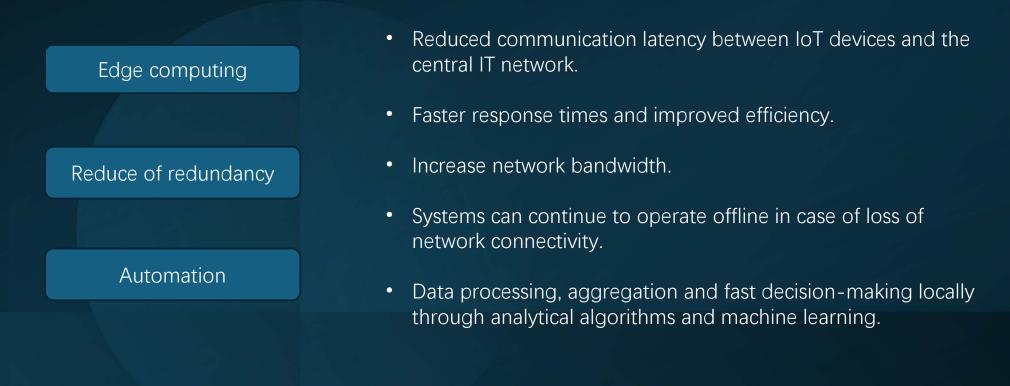



- Transmit/echo: time-related parameters
- Image (Bandwidth)
- Control/feedback
- Fundamental needs

3 Interface/protocol requirements:


- Universal
- Small size
- Easy for testing/maintenance

# **IV. Networking and IoT Integration**




• Implemented @ 53cm Binocular

# **IV. Networking and IoT Integration**



# V. Future Outlook



|             | Window Incremental Forest for System Delay Prediction in Satellite Laser Ranging |
|-------------|----------------------------------------------------------------------------------|
| 09:45-10:00 | Speaker: Yang Chun                                                               |
|             | Affiliation: Yunnan Observatories, Chinese Academy of Sciences                   |

# V. Summary



Limitation results from outdated telescope structures in adaptability to new experimental requirements and technological integrations.



Recent enhancements in modularity and scalability aimed at improving the system's performance and expanding its functional capabilities.

High-performance co-ax cables significantly reducing system latency.



Integration of Internet of Things (IoT) devices, enhancing data bandwidth and enabling more efficient remote management of the telescope system.



# 谢谢! Thank you!

23rd International Workshop on Laser Ranging





Contact: pixiaoyu@ynao.ac.cn

Oct.22, Kunming