

Instituto Geográfico Nacional αςιοναί 📻 Ινεορμαζιόν

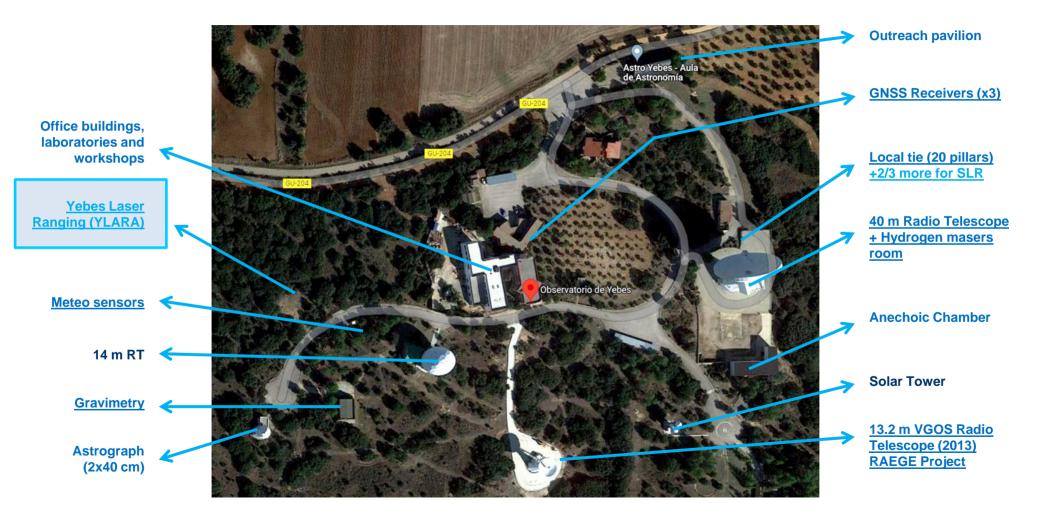
Validation of the YLARA Station **Current status and future upgrades**

Beatriz Vaquero, José C. Rodríguez, Adolfo García-Marín, José Antonio López-Pérez, Álvaro Gómez

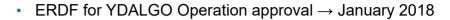
Yebes Observatory (IGN/CNIG), Guadalajara-Spain

23rd International Workshop on Laser Ranging, Kunming-China

21-10-2024



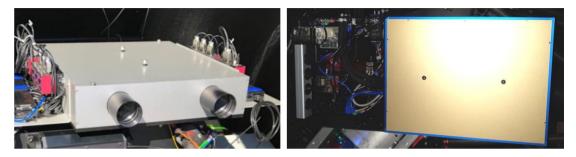
European Regiona Development Fund


Yebes as a GGOS Core Site

Project Development - Main Milestones

Telescope assembly installation: cable wrap, mount and receiver telescope (from left to right)

- General specifications definition → 2018-2019
- Turnkey contract TTI/Digos, Kick off \rightarrow October 2020
- Subsystems design and construction \rightarrow 2021-2022
- Building construction and dome installation \rightarrow Autumn 2022
- Subsystems installation and integration on site \rightarrow Spring 2023
- Commissioning \rightarrow July October 2023
- Quarantine Procedure → Observations April August 2024,
 → Released 08 October 2024



YLARA station working plan	2018	2019	2020	2021	2022	2023
Building and site infrastructures						
Telescope Assembly						
Dome						
Optical Subsystem (laser, detector, etc.)						
Measurement System (RGG, ET, etc.)						
Time and frequency subsystems						
Security systems and sky monitoring						
Software package and control systems						
System Engineering, Design and System Specification						
Integration and Commissioning						
Fechnical and Scientific Management and Quality Assurance						
Promotion						General Specifica
Staff (2 engineers)						
						Subsystems desi
						Construction or a
						Integration or inst

YLARA Building Overview

Customized RC700 model by Officina Stellare

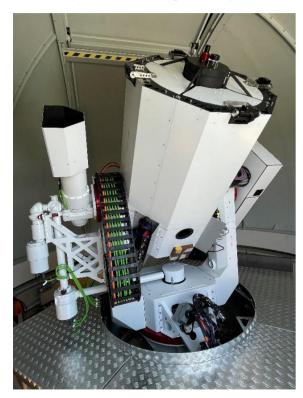
- M1 diameter: 700 mm
- 3 Nasmyth foci
- Operation rotation range on azimuth: -270%+270%
- Atl-Azimuth Mount. Slew rate: 12°/s for Az and El
- Transmission path: Coudé path + beam expander

Laser and Detector packages. Subsystem designed and integrated by IWF-Graz

Telescope Assembly Overview (Officina Stellare)

Piggy-back configuration

- Laser package mounted directly on top of the main mirror cell
- Detector package mounted directly on the first Nasmyth focus


Coudé Focus

 Laser installation in a conditioned room, transmitting the pulses through the Coudé path

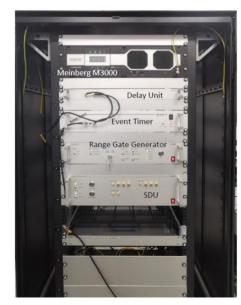
Model	Compiler Compact Passat
Pulse Repetition rate	1000 Hz (adjustable)
Energy per pulse	355 μJ avg @ 532 nm 543 μJ avg @ 1064 nm
Pulse width	7 ps @ 532 nm 8,5 ps @ 1064 nm

Detector	λ	Diameter	QE @ λ
C-SPAD	532 nm	200 µm	> 40 %
IR-SPAD	1064 nm	80 µm	max 30 %

Coudé path transmitting telescope, receiving telescope, detector package and laser package

Fiber calibration + mountable external target

Baader dome


- 5,3 m diameter
- Slit-type: horizontal lower flap and shutter + solar shield protection
- Installed October 27th, 2022

Rack 1

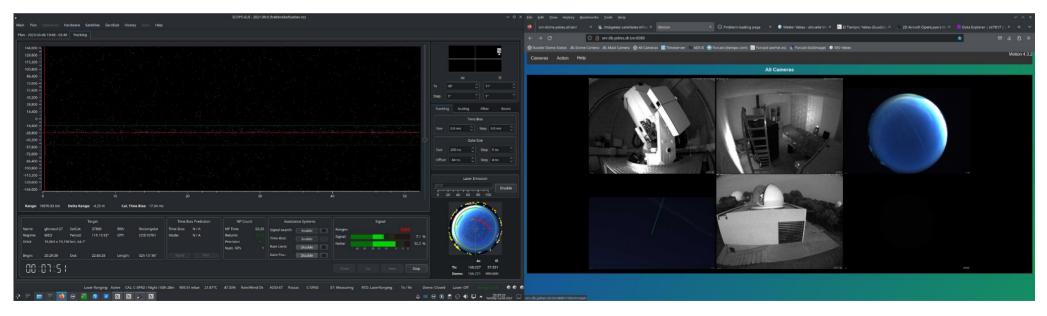
- Laser Safety Unit, SLU
- Station Protection Unit, SPU
- Aircraft Detection Unit (ADU)
- Command & Control (C2) & Database (DB) Servers

Rack 2


- Lantime M3000 + Timing Antenna
- Riga Event timer A033-ET/USB
- Range Gate Generator, RGG
- Signal Distribution Unit, SDU

Racks installed in the Coudé room

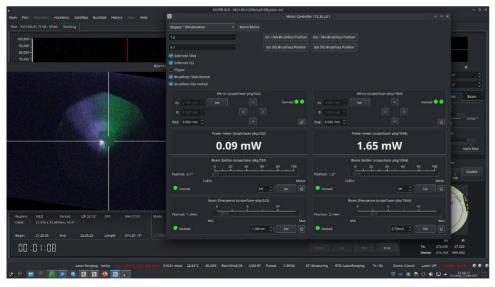
Meteorological mast + Laser Safety Subsystems (aircraft safety)

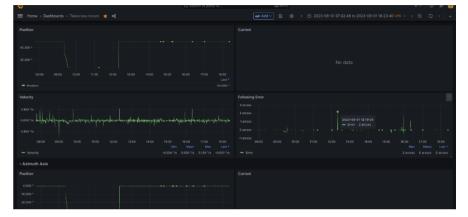

- Temperature, humidity and pressure sensors, rain sensor ON/OFF, cloud and wind speed sensor
- ADS-B and FLARM receivers, OMEA 8C all sky camera

Monitoring of relevant parts (Dome + Telescope, Coudé room, Allsky, Laser Beam, Station, Satellite Camera)

SCOPE - Centralized complete station operation, control, monitoring, data analysis and processing

- All items integrated via a modular platform with intuitive and modern IFs (SCOPE GUI, Motion, Grafana, ...)
- The full station can be controlled completely via one PC and even just one screen, both locally or remotely
- Is running in Potsdam, Tenerife, Tsukuba, Matera and Yebes

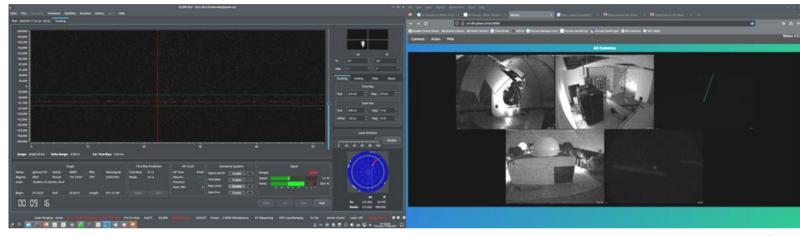



Satellite tracking in SCOPE GUI with surveillance camera IF in browser (Developed by DIGOS)

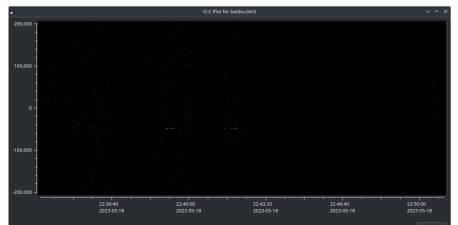
End to end fully integrated SW and HW solutions

Complete configuration, adjustment, alignment, surveillance as well as monitoring possible

Laser and alignment control IFs and camera showing the 532 nm and 1064 nm laser beam as well as the satellite



SCOPE screenshot, visible passes for 8 hours


May 18th, 2023 → First SLR Observation

532 nm: GLO139 2023-05-18, 00:24 UTC

1064 nm: Beidou 3M3 18-05-2023, 22:30 UTC (short pass due to weather)

8 Close

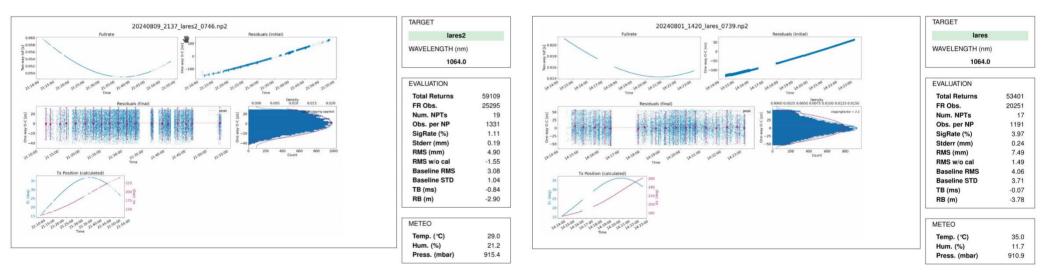
Observation example

Lageos 2 in 1064 nm from 31-07-2023 21:50 UTC

• 6066 FR returns in 83s formed into 1 NP at return rate of 10% instantaneous and 7% average at 38° elevation

2023-07	-31 19:57 - 23:57	Tracking																	
0,000 -									_										
,000 -																			
,000 -																	T×		
,000 -																	•		
,000																	Az	El	
,000 -																Tx -18'		-24"	
,000																			
,000,																Step 2"	<	2"	``
,000																Tracking	Scaling	Filter E	Beam
- 000,																	-	21	
000	······································																Time		
,000 -	والمستقدية ومسترور ومعتركوه والمستكن															Size 0.0	ms 🗘	Step 3.0 ms	0
,000 -															-		Gate	size	
,000 -																			~
,000 -																Size 12	0 ns 🗘	Step 5 ns	
000 -																Offset -1	7 ns 🗘	Step 4 ns	$\hat{}$
000 -																			
,000 -																	Laser En	ission	
,000																			
- 000	· · ·			· ·	1 1				<u></u>			· · ·		· · ·			40 60		isable
	0			10		20			30			40		50	U	0 20	40 00 0	0 100	
. ge: 6	i978.97 km 🛛 🖸	elta Rang	e: -2.63 m	Cal. Tin	ne Bias: -2.27 ms														
																1			
			Target			Time Bi	as Prediction	NP Co	unt	Assista	nce Systems		Signa			(
9:		SatCat:	22195	RRA:	Sphere		-1.3ms (±0.2)	NP Time	01:23	Signal search:	Enable 🖉	Ranges:		6098					
ne: :	MEO 5,615 x 5,953 kr	Period:	03h 42'27"	CPF:	DGF20701	Mode:	Quadratic (#56)	Returns Precision	6066 0.2	Time Bias:	Enable 🚳	Signal:			10.1 %	V		11	
	5,015 X 5,953 KI	1, 32.7						Num. NPs	2	Rate Limit:	Enable 🕼	Noise:	-45 -30 -20 -15	10 -5 -2 0	0.6 %			/	
n:	21:48:34	End:	22:35:06	Length:	00h 46' 32"	Apply	Plot		_	Gate Pos.:	Enable Ø							-	
																		Az El	
111 .	02:49											Close		Next	Stop	т	K: 85.2	34 38.675	

Satellite tracking IF in DiGOS SCOPE SW


Automatic Processing Examples

LARES-2 in 1064 nm from 09-08-24 21:37 UTC

 25295 FR returns with a 4,9 mm RMS formed into 19 NPs with 0,19 mm Stderr

LARES in 1064 nm from 01-08-24 14:20 UTC

 20251 FR returns with a 7,49 mm RMS formed into 17 NPs with 0,24 mm Stderr

NPs formed with automatic DiGOS NPgo module

Station Commissioning and First Performance Analysis

λ	LEO	Lageos	Etalon	GNSS	IRNSS	Total
0532	9	12	4	23	0	48
1064	11	21	3	9	2	46
Both	20	33	7	32	2	94

Number of passes collected from 18-05-2023 until 31-07-2023 (Digos)

05.4 5 11 4 1 2. 94.8 94.6 94.4 . . . 04.2 2023-04-20 2023-05-13 2023-06-05 2023-06-29 2023-07-22 2022.08.14 2022.09.04 2022.00.20

1064 nm calibration history during Commissioning

post-fit residuals LG1/LG2/LA2 (5 selected weeks)

Quality of observations assessed with geodetic solutions

- Yebes NPs to LAGEOS-1/2, Etalon-1/2, and LARES-2 included in global solutions
- 5 weeks available
- Setup similar to ILRS ASC

Lageos-1/2, Lares-1/2 data statistics for 23 of

Calibration statistics

٠

٠

٠

the 33 collected passes, on average

532 nm calibration RMS = \sim 25 ps

1064 nm calibration RMS = \sim 21 ps

Calibration history was stable

- FR data RMS = 5.79 mm
- NP data RMS = 0.26 mm

Quarantine - Facing the Challenge

ILRS Station Quarantine Procedure

- Notify to ILRS CB
- Station Site Log establishment
- sFTP account for uploading data to the EDC
- Validation criteria: observations to a min. of 20 acceptable passes on each satellite (LAGEOS-1 and -2 and LARES-1 and -2) within a 60-day sliding window
- To be an ILRS core site: standard deviation in the Normal Points to the mentioned satellites under 10 mm in standard deviation; minimize any systematic errors and their variability, such as range biases

To be included as Active Station in the ILRS network

Yebes,	Spain	(7817)
--------	-------	--------

Common information	
Station-ID:	7817
Site	Yebes, Spain
Code:	YEBL
Datacenter:	EDC
Longitude:	3.0905 W ¹
Latitude:	40.5245 N1

Status of the latest SOD

SOD	Start Date	End Date	Active
78176201	2024-10-08	active	Validated
78176201	1970-01-01	2024-10-08	Quarantine (released)

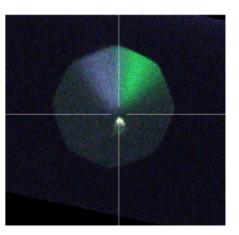
https://edc.dgfi.tum.de/en/stations/7817/

Quarantine - Facing the Challenge

			SE	EMANA	DEL 12 AI	18	DE AGOSTO	Adolfo
								Álvaro
Fecha	Ho	ora INICIO	FIN	ELEV	Satélite		Tiempo / Operador / Notas	/
								Bea
			07:04:19		LAGEOS 2		1 hora	
2024	Aug 12	06:14:49	06:20:34	23.4	LARES			
2024	Aug 12	10:17:59	11:13:28	82.0	LAGEOS 2			
2024	Aug 12	11:09:05	11:56:24	68.2	LAGEOS 1			
2024	Aug 12	12:19:14	12:29:47	36.8	LARES		3 horas TODOS LOS PASES	
2024	Aug 12	12:33:35	13:06:30	31.6	LARES-2			
2024	Aug 12	20:34:14	21:17:24	35.6	LARES-2			
2024	Aug 12	21:25:46	22:13:19	83.5	LAGEOS 1		2 horas	
Tarea	s: alin	neamiento,	modelo de	punteri	ia			
			09:18:09				2 horas, pases sueltos	
2024	Aug 13	09:48:54	10:28:43	40.9	LAGEOS 1			
2024	Aug 13	12:29:01	13:13:59	44.5	LAGEOS 2			
2024	Aug 13	13:12:09	13:25:16	77.4	LARES			
2024	Aug 13	13:20:03	14:05:20	66.2	LAGEOS 1		3 horas TODOS LOS PASES	
2024	Aug 13	14:42:35	15:35:21	79.5	LARES-2			
2024	Aug 13	15:13:04	15:18:06	22.8	LARES			

Optimized schedule focus on the 4 main satellites

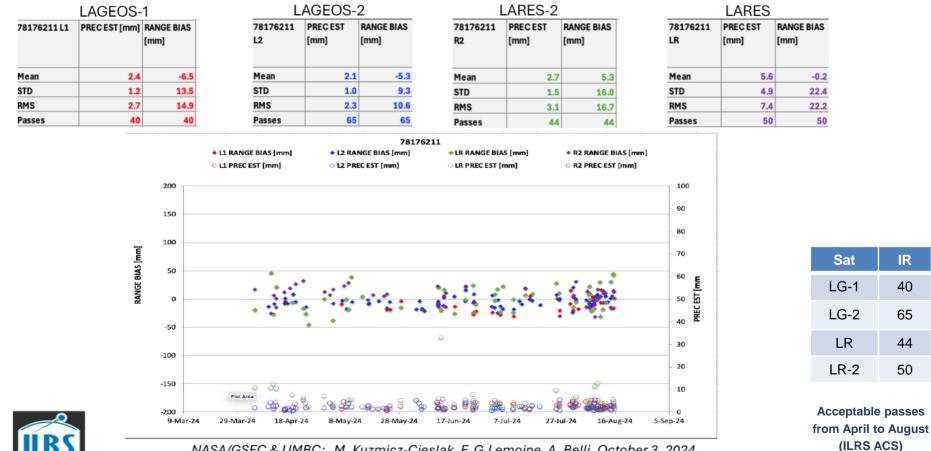
The two color dilemma


- Two color capability → observations in two color → 20 passes of each satellite in both color → A TOTAL OF 160 PASSES! → Not possible currently for us
- Focus on IR observations since July

YLARA operation stuff during quarantine

- Equivalent to 3 operators dedicating 20% of their time → ~21 hour per week (2-3 shifts per person)
- · Establishment of schedules focus on the 4 priority satellites
 - + Other satellites observation
- Availability for shift changes in case of bad weather
- Dealing with usual issues in a new system
 - ✓ Operation + training + learning
- Digos support

Sat	Green	IR
LG-1	7	9
LG-2	5	26
LR	3	24
LR-2	2	9


Acceptable passes from April to June ILRS ASC (Frank Lemoine)

Quarantine - Facing the Challenge

SEMANA DEL 12 AL 18 DE AGOSTO Adolfo Fecha Hora INICIO FIN ELEV Satélite Tiempo / Operador / Notas 2024 Aug 12 06:07:34 07:04:19 65.6 LAGEOS 2 1 2024 Aug 12 06:120:34 23.4 1 1 hora	 YLARA operation stuff during Equivalent to 3 operators decomposition 	dicating 20% of their time $\rightarrow \sim 21$ hour
2024 Aug 12 10:17:59 11:13:28 82.0 2024 Aug 12 11:09:05 11:56:24 68.2 2024 Aug 12 12:19:14 12:29:47 36.8	Don't worry!	ity satellites
2024 Aug 12 12:33:35 13:06:30 31.6 2024 Aug 12 20:34:14 21:17:24 35.6 2024 Aug 12 21:25:46 22:13:19 83.5	erators next November reen quarantine?	ther
2024 Aug 13 08:21:19 09:18:09 74.4 2024 Aug 13 09:48:54 10:28:43 40.9 2024 Aug 13 12:29:01 13:13:59 44.5 2024 Aug 13 13:12:09 13:25:16 77.4 2024 Aug 13 13:12:09 13:25:16 77.4 2024 Aug 13 13:12:09 14:05:20 66.2 2024 Aug 13 15:13:04 15:18:06 22.8 Optimized schedu		
The two color dilemma	LG-1 7 9	
 Two color capability → observations in two 	LG-2 5 26	•
color \rightarrow 20 passes of each satellite in both color \rightarrow A TOTAL OF 160 PASSES! \rightarrow Not	LR 3 24	
possible currently for us	LR-2 2 9	
 Focus on IR observations since July 	Acceptable passes from April to June ILRS ASC (Frank Lemoine)	

Result of Quarantine Provided from ILRS ASC

NASA/GSFC & UMBC: M. Kuzmicz-Cieslak, F. G.Lemoine, A. Belli. October 3, 2024

IR

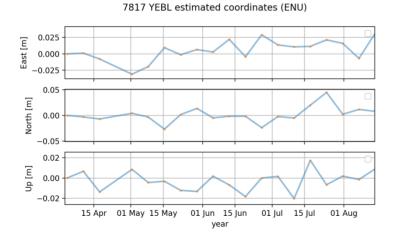
40

65

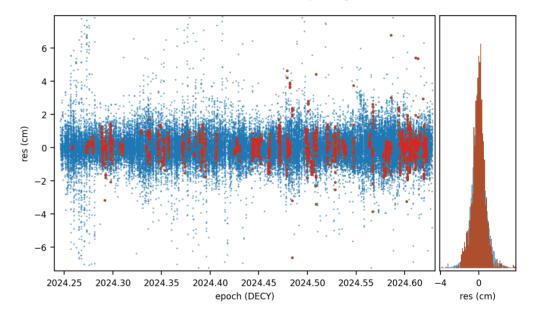
44

50

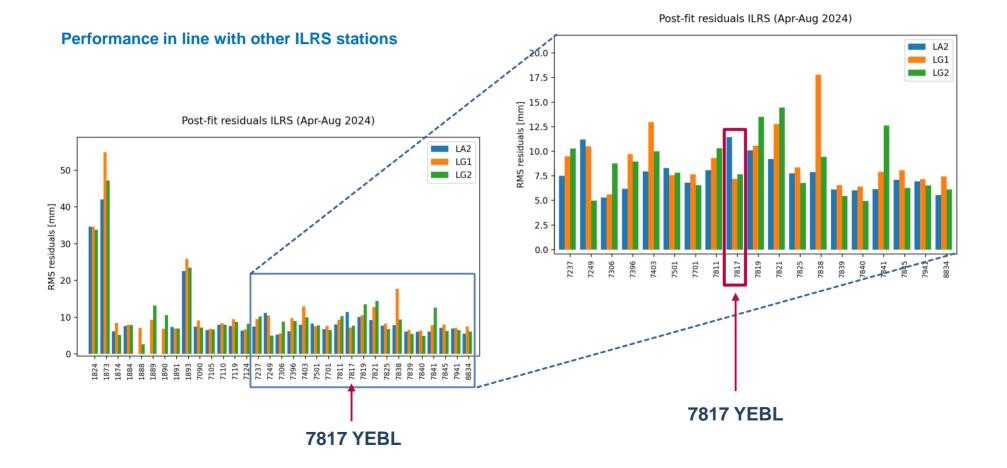
- NP data from 7817 YEBL analyzed in global solutions
- Period: April to August 2024 (quarantine)
- 7-day arcs of LAGEOS, LAGEOS-2, LARES-2
- Estimation: orbits, station positions, biases, EOP
- Two-color data treated as per ILRS ASC

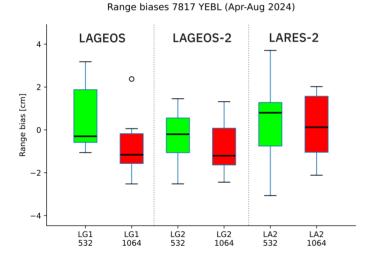

Satellite	Wavelength	NP	Weeks
LAGEOS-1	532	107	9
	1064	418	14
LAGEOS-2	532	93	8
	1064	688	18
LARES-2	532	93	6
	1064	457	17

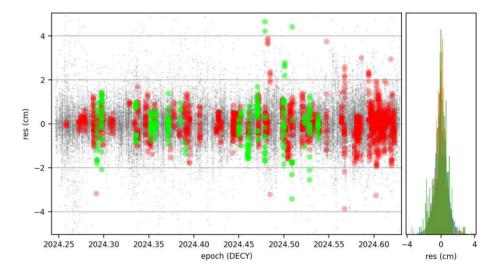
700 -600 -500 -₫ ⁴⁰⁰ # 300 200 -100 -0 L1 L1 L2 L2 LA2 LA2 532 1064 532 1064 532 1064


7817 YEBL #NP accepted in analysis

More IR data: easier tracking + quarantine requirements


- · Good fits, no major problems
- A few outliers present in some weeks
- Sufficient data to estimate coordinates for all weeks of the period considered (20)
- Too early to estimate velocities reliably

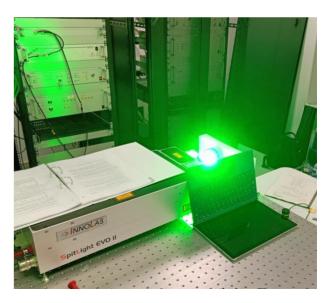

Post-fit residuals ILRS (Apr-Aug 2024)


Red: YEBL residuals Blue: rest of stations

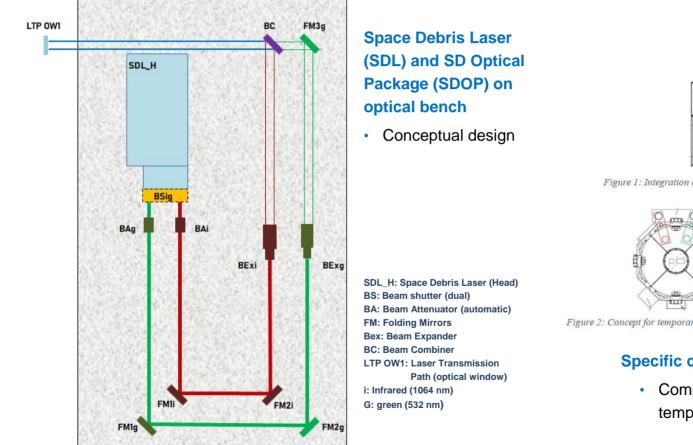
- No differences between wavelength in residuals
- Only IR data since July (quarantine requirements)
- RB at the cm level (~9 mm diff. between colors)

Post-fit residuals 7817 by wavelength (Apr-Aug 2024)

Red: YEBL 1064 nm Green: YEBL 532 nm Grey: rest of stations


NB: default CoM applied

Laser system for space debris observation - SDLR



Delivery and pre-installation carried out on May 2023

Model	Innolas SpliLight EVO II
Repetition rate	200 Hz
Pulse Energy	> 350 mJ @ 1064 nm > 200 mJ @ 532 nm
Beam diameter	7 mm
Divergence	< 0,5 mrad full angle
Pulse duration	5 - 8 nm

SDLR Preliminary Design

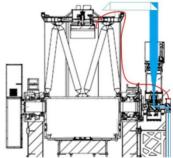


Figure 1: Integration concept of Coudé fibre calibration method for regular calibrations)

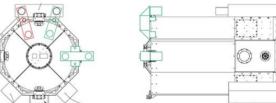


Figure 2: Concept for temporary attachable / removable calibration target (similar to piggyback cal target)

Specific calibration system

 Composed by: Permanent Fiber and temporary calibration Target (Digos)

THANK YOU! 谢谢

SLR YLARA

