Simulation Study of SLR Data Compression Algorithms

Linda Geisser¹, Andreja Susnik², José Rodríguez³, Toshimichi Otsubo⁴, Ulrich Meyer¹, Daniel Arnold¹, Adrian Jäggi¹

> ¹Astronomical Institute, University of Bern, Switzerland ²NERC Space Geodesy Facility, East Sussex, United Kingdom ³Instituto Geografico Nacional, Madrid, Spain ⁴Hitotsubashi University, Kunitachi, Japan

23th International Workshop on Laser Ranging, Kunming, China, 20-26 October 2024

23th INTERNATIONAL WORKSHOP ON LASER RANGING, Kunming, China, 20-26 October 2024 Linda Geisser: Simulation Study of SLR Data Compression Algorithms

23th INTERNATIONAL WORKSHOP ON LASER RANGING, Kunming, China, 20-26 October 2024 Linda (

Introduction

- Simulation Study
- Modelled Distances from Satellite Centre
- Simulation of FR
- Find LE
- Orbit
- reconstruction
- •NPT Generation
- •Conclusions & Outlook

0.08 0.06 0.04 0.02 Relative Probability [n_i/N] for bin i

CELEBRATING 60 YEARS OF SLR

Modelled Distances from Satellite Centre: Over Pass vs Per Bin

4/13

Simulation of Fit Residuals

- Introduction
- Simulation Study
- Modelled Distances from Satellite Centre
- Simulation of FR
- Find LE
- Orbit
- reconstruction
- •NPT Generation
- •Conclusions & Outlook

- Simulation of fit residuals of a LAGEOS-1 pass
 - Modelled distributions of distances: averaged over pass
 - Return rate: 10%

-10

E .20

-40 -

-30 -30

- Length of the pass: \sim 45min
- Repetition rate of the laser: 1 kHz

Simulation of Fit Residuals

- Introduction
- Simulation Study
- Modelled Distances from Satellite Centre
- Simulation of FR
- Find LE
- Orbit
- reconstruction
- •NPT Generation
- •Conclusions & Outlook

- Modelled distributions of distances: averaged over pass / per bin
- Return rate: 10%

-10

E .20

-40 -

N: # of all data

0.08

Res -30 ĩ

- Length of the pass: ~45min
- Repetition rate of the laser: 1 kHz / 100Hz

Introduction

Simulation Study

- Modelled Distances from Satellite Centre
- Simulation of FR
- Find LE
- reconstruction
- Conclusions &

- Orbit

•NPT Generation Outlook

23 ON LASER RANGING (IWLR)

Orbit Reconstruction

 Orbit reconstruction by improving the orbit elements based on the NPT in a least-squares adjustment

CELEBRATING 60 YEARS OF SLR

- · Stability of LE is reflected in the orbit reconstruction
- · Orbit comparison strongly depends on the constraints of the orbit parameters

ub MIVERSITĂT BERN	NPT Generation
 Introduction Simulation NPT Generation Conclusions & Outlook 	 Data set: Full-rates to LAGEOS-1/2 from Herstmonceux for year 2019 NPT generation with different screening approaches LE with assumnig Gaussian, Gaussian to the front or KDE distribution with clipping limits of -50ps and +120ps around LE 2.5*RMS around mean LE with assuming KDE distribution with clipping limits of -20ps and +90ps around LE PMS lovel of the generated NPT
Acronyms: • HERL: SLR station located in Herstmonceux, UK • ZIML: SLR station located in Zimmerwald, Switzerland	LAGEOS1 GAUSS(-50+120): 9.2 ± 0.64 FRONT(-50+120): 10 ± 0.67 KDE(-50+120): 9.8 ± 0.65 RMS: 11.5 ± 1.2 KDE(-20+90): 7.6 ± 0.41 HORDON DEC Jan Time Z019
23"INTERNATIONAL WORKSHOP 23"INTERNATIONAL WORKSHOP Oc.20-28, 223 Col.20-28, 223 Col.20-28, 223	CELEBRATING DE YEARS OF SLR COOPERATION NI HE NEW ERA OF LRS

Summary & Outlook

- Simulation study
 - -Development of a simulation study to assess the stability of the Leading **Edge**. (Higher repetition rates increase the stability of the LE.)
 - -Performance of an orbit reconstruction to measure the loss of information due to data compression.
 - -Introduction of **more realistic observation** conditions (observation gaps, remaining trends fit residuals,...).
 - -Integration of simulations from **several stations** at different times to study the impact of the NPT formation on a global scale.
 - NPT generation based on real full-rate data from HERL
 - -The level of the RMS depends on the NPT formation approach.
 - -NPT generation for other SLR stations.

Summary & Outlook

- Introduction
- Simulation
- •NPT Generation
- Conclusions & Outlook

• Generation of NPTs for more and other SLR stations

Wish for the SLR stations:

Could you please provide the full-rate data including all returns within a limit of, e.g., \pm 5*sigma.

23" INTERNATIONAL WORKSHOP OCL20-28, 2024 Warming, Charles Contracting Of YEARS OF SLR COOPERATION IN THE NEW ERACE LPS •••

23th INTERNATIONAL WORKSHOP ON LASER RANGING, Kunming, China, 20-26 October 2024 Linda Geisser: Simulation Study of SLR Data Compression Algorithms