




# Matera Laser Ranging Observatory Upgrade



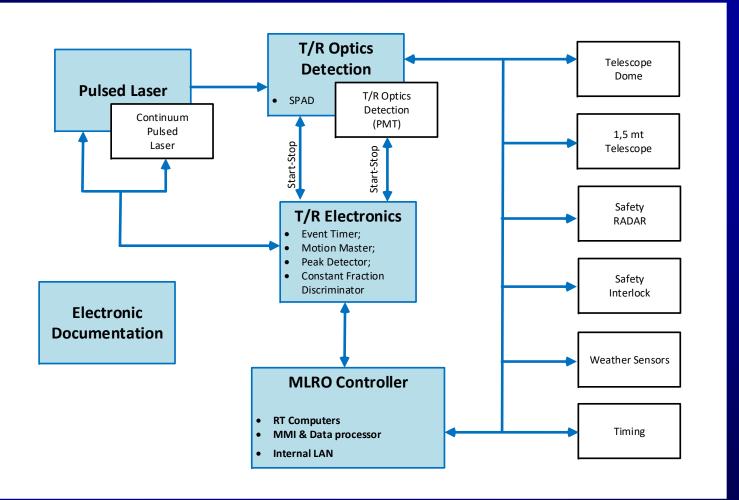
G. Bianco<sup>1</sup>, C. Benedetto<sup>1</sup>, R. Sala<sup>2</sup>, V. Luceri<sup>2</sup>, M. Paradiso<sup>2</sup>



1) Agenzia Spaziale Italiana, CGS - Matera

e-geos 2) e-GEOS S.p.A., CGS - Matera

23rd IWLR, Kunming (China), 20-26 October 2024


## MLRO specs

- Diffraction limited Cassegrain/Coudé telescope, 1.5 m aperture, 1" pointing accuracy (static & dynamic), 20°/s Az, 5°/s El tracking speed
- Nd::YAG active-active pulsed laser, originally dual wavelenght (green & UV),100 mJ, 40 ps, 10 Hz pulses. UV removed to add a new infrared channel for quantum communication
- Cesium/H-Maser frequency standards, GPS/UTC synchro, 1-ps event timing capability, sub-mm calibration (internal&external)
- Day & night, 1-color (and 2-color) ranging capability to cooperating targets (CCR arrays) from 400 km orbit to the Moon
- Single-shot ranging RMS jitter
  - $\leq 5 \text{ mm on LAGEOS} (\leq 1 \text{ mm NP})$
  - $\leq 5 \text{ mm on Starlette, ERS } (\leq 1 \text{ mm NP})$
  - $\leq 15$  mm on Etalon, Glonass ( $\leq 3$  mm NP)
  - $\leq 15 \text{ mm on Moon} (\leq 10 \text{ mm NP})$

## MLRO upgrade project

- Rationale: MLRO system design made in the 90' and is nowadays using technology not available anymore on the market
- Replacement of the station controller hardware
- Porting of the controller SW to the new HW platform
- Device replacement using COTS
  - Constant Fraction Discriminator device
  - Event Timer
  - Peak Amplitude Detector
  - Motion Master
  - SPAD receiving chain
  - Laser source
- SW tailoring and new MLRO functionalities

## System overview



#### MLRO controller HW/SW upgrade

#### MLRO controller HW by original design

| Name      | Description                         | Mo<br>del |
|-----------|-------------------------------------|-----------|
| DDC (HP2) | Documentation and Database Computer | HP J200   |
| DAC       | Data Acquisition Control            | HP743rt   |
| PAT       | Pointing, Acquisition and Tracking  | HP743rt   |
| ETP       | Event Timer Processor               | HP743rt   |
| SCP       | Streak Camera Processor             | HP744rt   |

#### New controller HW specs

- multi-core servers, 64-bit architecture
- I/O boards for the replaced devices
- SW licence for OS, compiler, DB, Versioning SW



## SW porting and upgrade

- Porting the MLRO SW not an easy job
- DiGOS Potsdam GmbH in charge of the SW porting and upgrade
- Use of a development platform to avoid SLR operation interruption
- Main tasks: C/C++ code Porting, Fortran code Porting, Database Migration
- SW tailoring
  - Replacement of Obsolete Devices & Integration of New Devices
  - Optimization of existing functionalities
  - Adding new functionalities
    - One-way ranging
    - LLR prediction using CPF
    - Astronomical objects tracking
- SW porting completed in January 2023

# MLRO MMI

MMI characteristics unchanged, optimized visualization and use of the windows



#### Event timer replacement

The main specifications of the available replacement equipment are reported in next table and compared to the current Event Timer specs

|                       |        | HTSI EVT             | EvenTech A033-<br>ET/usb            | quTAG HR                           |
|-----------------------|--------|----------------------|-------------------------------------|------------------------------------|
| Computer<br>Interface |        | Digital I/O          | parallel/USB,<br>ethernet (control) | USB 3.0                            |
| Channels              |        | 1 (12 input)         | 1 start + 1 stop                    | 1 start + 4/8 stop                 |
| Input level           |        | NIM                  | NIM/LVTTL                           | NIM/LVTTL                          |
| Input impedance       | Ω      | 50                   |                                     | 50                                 |
| Sensitivity           | mV     |                      |                                     | 1.5                                |
| Min pulse width       | ns     |                      | 4                                   | 0.3                                |
| Resolution            | ps     | ≤ 2.5                | 5                                   | 1                                  |
| RMS Jitter            | ps     | ≤ 10                 | < 7.5                               | < 10 (standard);<br>< 5 (HR model) |
| Dead Time             | ns     | ≤ 50                 | 50                                  | 40                                 |
| Measurement<br>speed  | meas/s | >100k<br>(estimated) | 12K                                 | 100M                               |
| Ref in                | MHz    | 10                   | 10                                  | 10                                 |
| 1PPS in               |        |                      | yes                                 | no                                 |
| 10 PPS in             |        | yes                  |                                     |                                    |

## Event timer replacement

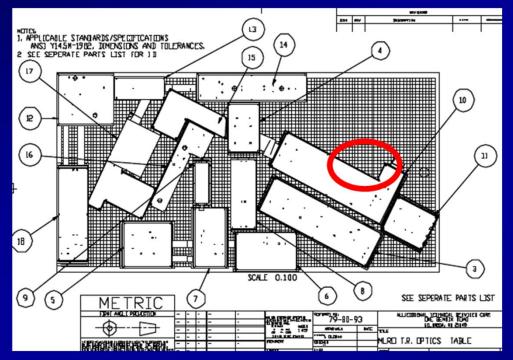


**HTSI EVT** 



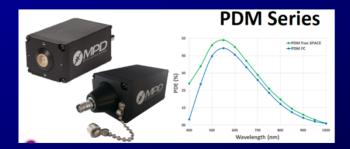


#### Motion master replacement


- Newport Motion controller mod. esp302
- Hard to find linear and rotating actuators compatible with the existing devices
- > Ad hoc adapters built by local manufacturer
- Both new and old actutators can be driven by means of proper configuration






#### SPAD installation

#### Position for the SPAD installation



#### Micro Photon Devices -PDM series

| Specifications @ 25°C                                                                                                                                             | Min            | Тур                                                                                              | Мах               | Units |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------|-------------------|-------|--|
| Photon Detection Efficiency (free space)<br>@ 400nm<br>@ 550nm<br>@ 650nm                                                                                         | 21<br>45<br>34 | 24<br>49<br>37                                                                                   |                   | %     |  |
| Fiber Receptacle coupling efficiency (CE)<br>20 $\mu$ m active area diam (wavelength > 470nm)<br>50 $\mu$ m and 100 $\mu$ m active area diam (wavelength > 470nm) | 70<br>80       | ≥ 80                                                                                             |                   | %     |  |
| Single Photon Timing Resolution (FWHM)<br>TTL Counting Output<br>NIM Timing Output - (wavelength > 470nm)                                                         |                | 35                                                                                               | 250<br>50         | ps    |  |
| After-pulsing probability                                                                                                                                         | 0.1            |                                                                                                  | 3                 | %     |  |
| Dead Time                                                                                                                                                         |                | 77                                                                                               |                   | ns    |  |
| Supply<br>voltage<br>connector                                                                                                                                    | 5<br>Sta       | ndard 3.5m                                                                                       | 12<br>m supply so | V     |  |
| Outputs<br>Pulse rise and fall times<br>Output pulse duration<br>Required Termination<br>Pulse Characteristics - TTL<br>Pulse Characteristics - NIM               |                | < 2ns<br>20ns typical<br>50 Ω<br>Digital, Positive, 0 to +3.3V<br>Digital, Negative, 0 to -700mV |                   |       |  |
| Gating input                                                                                                                                                      |                | 5V CMOS control (0V, detector off)<br>$50\Omega$ AC terminated, Internal $10k\Omega$ pull-up     |                   |       |  |



## New laser source

# Main characteristics of the available lasers on the market that could match the MLRO requirements

|                          |      | current | EKSPLA<br>2105          | EKSPLA<br>2206      | INNOLAS<br>MAGNA<br>(II/III) | INNOLAS<br>MAGNA<br>EVO III | INNOLAS<br>SpL DPSS<br>EVO  |
|--------------------------|------|---------|-------------------------|---------------------|------------------------------|-----------------------------|-----------------------------|
| PRF                      | Hz   | 10      | 10                      | up to 1             | c 20                         | up to 1k                    | 100                         |
| pulse energy<br>@532     | mJ   | 100     | 250                     | 7                   | ) 200/500                    | 150<br>(@100Hz)             | up to 550                   |
| Pulse width              | ps   | 50      | 90<br>(30 as<br>option) | 9                   | <600                         | <600                        | 5000/8000                   |
| Beam diameter            | mm   | 12      | 11                      |                     | 12                           | 8                           | 6.5 to 10                   |
| Beam<br>divergence       | urad | 600     | < 500                   | < 70                | ) < 500                      | < 500                       | < 500                       |
| Temporal stability       | ns   | ± 6     | N/A                     | N/.                 | < ± 0.4                      | < ± 0.4                     | 1                           |
| Pointing<br>stability    | urad | 250     | < ± 60                  | < 10                | ) < ± 50                     | < ± 50                      | < ± 30                      |
| Pulse (energy) stability | %    | ± 5     | ± 2.5                   | ± 1.                | 5 < 1.6                      | < 2                         | < 1.7                       |
| Synch                    |      | yes     | external<br>trigger     | externa<br>trigge   |                              |                             |                             |
|                          |      |         |                         |                     |                              |                             |                             |
| Head (WxLxH)             | cm   |         | 60x150x35               | (120x220x35)<br>TBC | 109x35x13                    | 55x50x13                    | 50x15x13 to<br>50x43x13     |
| Power supply<br>(WxLxH)  | cm   |         | 55x60x110               | (55x60x103)<br>TBC  | 56x40x43                     | 7 RU                        |                             |
| Chiller (WxLxH)          |      |         |                         | 60x60x60            |                              |                             |                             |
| Cooling type             |      |         | water                   | water               | water                        | water                       | water/air                   |
| Weight                   | kg   |         |                         |                     |                              |                             | up to 40<br>(up to 50 P.S.) |

- INNOLAS MAGNA II PSA-20Hz
- modified to reach the 50 ps pulse width

## New laser source in place



#### CFD and PAD replacement

- Constant Fraction Discriminator
  - CFD with similar characteristics to the TENNELEC TC454 in use not available as COTS
  - another TENNELEC TC454 was procured as spare

#### Peak Detector

- Replacement still an open point
  - Use of oscilloscope failed
  - Use of oscilloscope + event timer failed (Eventech)
  - Reuse of existing spare boards failed
  - Check with other SLR stations using PAD, no device available around
- Custom made device necessary

#### MLRO upgrade status

- > All devices in place
- > Tests undergoing
- > Operation with new devices starting in December 2024
- > SLR data release after the ILRS quarantine