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Local Lorentz Invariance SaToR-5-

One way to look for evidence of new physics beyond Special Relativity (SR) and General
Relativity (GR) is to check for violations, apparent or effective, of the pillars of Einstein's
theories.

For example, Lorentz invariance is a feature of both SR and GR.

The fusion of Special Relativity with Quantum Mechanics was very successful in the
development of Quantum Field Theory and, ultimately, the current Standard Model of
particles and fields.

However, violations of Lorentz invariance could arise from some models of Quantum
Gravity (QG). Indeed, the Planck length represents a fundamental length scale in QG, but it
is not an invariant quantity: Lorentz invariance might be violated at some level.
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Local Lorentz Invariance SafoR-5

Local Lorentz Invariance (LLI) states that the outcome of any local (in space and time) non-
gravitational experiment is independent of the velocity of the freely-falling reference
frame in which the experiment is performed.

Modern unification theories suggest that the gravitational long-range interaction between
macroscopic bodies may be mediated, not only by the metric tensor field 8y of GR but also
by other fields (scalar, vector, or tensor).

More generally, besides GR, any metrically coupled tensor-scalar theory of gravitation does
not predict any violation of local boost invariance. This is for example the case of the
Brans-Dicke theory of gravitation which includes the existence of a scalar field ¢.

Local Lorentz Invariance is a key ingredient of the
(Einstein or Strong) Equivalence Principle




Local Lorentz Invariance SaFoR-5

However, in the case of theories that contain vector fields or other tensor fields in addition
to the metric tensor g,,, one expects that the global distribution of matter in the Universe
select a preferred rest frame for the local gravitational interaction.

In this case the physical laws could be different from a moving observer with respect to a
stationary one, also considering their relative
orientation...

Summarizing:

In theories of gravity with v holds,

¢
while in theories with 7%
KK
. Iuv .
or with C LLI is violated. = : g
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Credits: ESA and Planck collaboration
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The parameterized post-Newtonian (PPN) formalism
* One way to test a theory of gravitation is by studying its post-Newtonian limit
* Post-Newtonian formalism or PPN formalism details the parameters in which
different metric theories of gravity, under weak-field and slow-motion (WFSM)

conditions, can differ from Newtonian gravity o[
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From the phenomenological point of view, and in the framework of the parameterized post-Newtonian
(PPN) formalism [1,2,3], valid in the WFSM limit of GR, the Preferred Frame Effects (PFE) are described by
the parameters a,, a, and a3, all equal to zero in GR and in tensor-scalar theories of gravitation.

In particular, in the case of the interaction of N masses, the Lagrangian depends on the two parameters a,
and a,, that, if different from zero, will provide non-boost invariant terms depending on the velocities (v)) of
the test masses with respect to some gravitationally preferred rest frame [4]:

N _
LN =Lp, o+ Ly, + L,

O e LR
%1 4c2 Tab a
a*b
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Local Lorentz Invariance

LLI and, consequently, PFE, are well tested in the context of high-energy physics experiments but are much more difficult
to test in the context of gravitation, both in the weak-field regime and in the strong- or quasi-strong-field regime.
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Abstract

Motivated by ideas about quantum gravity, a tremendous amount of effort over the past
decade has gone into testing Lorentz invariance in various regimes. This review summarizes
both the theoretical frameworks for tests of Lorentz invariance and experimental advances
that have made new high precision tests possible. The current constraints on Lorentz violating
effects from both terrestrial experiments and astrophysical observations are presented.
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Abstract

We present an updated review of Lorentz invariance tests in effective field
theories (EFTs) in the matter as well as in the gravity sector. After a
general discussion of the role of Lorentz invariance and a derivation of its
transformations along the so-called von Ignatovski theorem, we present the
dynamical frameworks developed within local EFT and the available constraints
on the parameters governing the Lorentz breaking effects. In the end, we discuss
two specific examples: the OPERA ‘affaire’ and the case of Hofava—Lifshitz
gravity. The first case will serve as an example, and a caveat, of the practical
application of the general techniques developed for constraining Lorentz
invariance violation to a direct observation potentially showing these effects.
The second case will show how the application of the same techniques to a
specific quantum gravity scenario has far-reaching implications not foreseeable
in a purely phenomenological EFT approach.

PACS numbers: 98.70.Rz, 04.60.—m, 11.30.Cp, 12.20.Fv
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In 1994, Damour and Esposito-
Farese have shown that the
orbits of some artificial satellites
have the potential to provide
improvements in the limit of the
o, parameter down to the 107®
level, thanks to the appearance
of small divisors which enhance
the corresponding PFE.

PHYSICAL REVIEW D VOLUME 49, NUMBER 4 15 FEBRUARY 1994

ARTICLES

Testing for preferred-frame effects in gravity with artificial Earth satellites

Thibault Damour
Institut des Hautes Etudes Scientifiques, 91440 Bures sur Yvette, France
and Département d’Astrophysique Relativiste et de Cosmologie, Observatoire de Paris,
Centre National de la Recherche Scientifique, 92195 Meudon, France

Gilles Esposito-Farese
Centre de Physique Théorigue, Centre National de la Recherche Scientifique,
Luminy, Case 907, 13288 Marseille Cedex 9, France
(Received 8 October 1993)

As gravity is a long-range force, one might a priori expect the Universe’s global matter dis-
tribution to select a preferred rest frame for local gravitational physics. At the post-Newtonian
approximation, two parameters suffice to describe the phenomenology of preferred-frame effects.
One of them has already been very tightly constrained (|az| < 4 x 1077, 90% C.L.), but the present
bound on the other one is much weaker (|a;| < 5 x 107*%, 90% C.L.). It is pointed out that the
observation of particular orbits of artificial Earth satellites has the potential of improving the a;
limits by a couple of orders of magnitude, thanks to the appearance of small divisors which enhance

the corresponding preferred-frame effects. There is a discrete set of inclinations which lead to arbi-
trarily small divisors, while, among zero-inclination (equatorial) orbits, geostationary ones are near
optimal. The main «;-induced effects are (i) a complex secular evolution of the eccentricity vector
of the orbit, describable as the vectorial sum of several independent rotations, and (ii) a yearly
oscillation in the longitude of the satellite.




The SaToR-G experiment BaToR=t:

Satellite Tests of Relativistic Gravity (SaToR-G, started on 2020) and the previous LAser RAnged
Satellites Experiment (LARASE, 2013-2019) are two experiments devoted to measurements of the
gravitational interaction in the WFSM limit of GR by means of laser tracking to geodetic passive
satellites orbiting around the Earth. The two experiments were and are funded by the Italian
National Institute for Nuclear Physics (INFN-CSN2).

In particular, SaToR-G aims to test gravitation beyond the predictions of GR searching for effects foreseen by
alternative theories of gravitation (ATG) and possibly connected with “new physics”.

SaToR-G builds on the improved dynamical model of the two LAGEOS and LARES satellites achieved within
the previous project LARASE.

The improvements concern the modeling of both gravitational and non-gravitational perturbations.

LARASE SaToR-G

2
2013 2019 2020 2024




The SaToR-G experiment aToRet-

From the analysis of satellite orbits it is possible to obtain a series of measurements of gravitational effects
with consequent constraints on different theories of gravitation. The main ones include:

Relativistic precessions

Constraints on long-range interactions
Nonlinearity of the gravitational interaction
Local Lorentz Invariance

Equivalence Principle

AN AN ol S

From these measurements it is possible to obtain constraints on PPN parameters and their combinations.

The ultimate goal is to provide precise and accurate measurements, in the sense of a robust and reliable
evaluation of systematic errors, in order to obtain significant constraints for the different theories.




The SaToR-G experiment TRt

From these two main measurements:

1. Lense-Thirring precession of the nodes of LAGEOS, LAGEOS Il and LARES
2. Relativistic precession of the argument of pericenter and mean anomaly of
LAGEOS Il (Schwarzschild, ...) p—-1=(1.5+7.4)x103+16x1073

£e—1=(-0.12+2.10) x 1073+ 2.5 x 1072

we were already able to constrain the gravitational interaction for several
physical theories of gravitation:

102
1. PPN parameters
2. Extended gravity theories 10~
3. Yukawa-like long-range interactions -
4. Torsional theories of gravity i
. . o -8
5. Vector-tensor theories of gravity Pericenter: precision £
Pericenter: accuracy o
——————— Pericenter + Mean anomaly: precision 0
——————— Pericenter + Mean anomaly: accuracy o
10° A\
LAGEOS Ii \___ 2022
e _precession ,
10° 10° 10'° 10'°

Range A [m]
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The test masses SaToR=6-

The predictions of GR on the orbits of geodetic satellites, which play the role of test
masses, are compared with those of ATG both metric and non-metric in their essence.

Parameter Unit Symbol LAGEOS LAGEOS II LARES
Semi-major axis km a 12 270.00 12 162.08 7 820.31
Eccentricity - e 0.0044 0.0138 0.0012
Inclination deg. i 109.84 52.66 69.49
Radius cm R 30.0 30.0 18.2
Mass kg M 406.9 405.4 383.8
Area/Mass m?/kg A/M 6.94x107* 6.97x10* 2.69x10*

LAGEOS Il (ASI/NASA, 1992)

LARES (ASI, 2012)




Precise Orbit Determination aToRet-

Currently, we are using the following software in our POD:

« GEODYN Il (NASA/GSFC)
e SATAN (NSGF, UK) in collaboration with “Observatorio de YEBES” (Spain) (under test)
* Bernese (University of Bern, CH)

1. From a least squares fit of the tracking data by means of an R
appropriate dynamic model, the estimate of the state (
vector of the satellite over 7-day arcs is obtained.

2. Then from an appropriate comparison between the state
vector estimated at the beginning of each arc and the state
vector estimated at the beginning of the previous arc but
propagated at the same epoch, the residuals in the orbital
elements are obtained: AX,os = Xest — Xpro-

At=t1_t0 At—_-tz_tl

SLR measurements g .

. * Fitted trajectory
D. Lucchesi, G. Balmino, The LAGEOS satellites orbital residuals
determination and the Lense—Thirring effect measurement. Plan. and

Propagated reference trajectory
Space Science, doi:10.1016/j.pss.2006.03.001 , 2006




Precise Orbit Determination

POD and models for the two LAGEOS and LARES satellites:
GEODYN Il s/w

Arc length, 7 days

General Relativity: not modeled

Empirical accelerations, CR, ...: not estimated
Non-gravitational perturbations: internal and external
Gravity field: from GRACE and GRACE-FO solutions
State-vector adjusted to best fit the tracking data

TABLE III. Models currently used for the POD obtained from GEODYN II. The models are grouped in gravitational pertur-
bations, non-gravitational perturbations and reference frames realizations.

Model for Model type Reference
Geopotential (static) EIGEN-GRACE02S/GGMO5S [42-44]
Geopotential (time-varying: even zonal harmonics) GRACE/GRACE FO [43, 44]
Geopotential (time-varying: tides) Ray GOT99.2 [45]
Geopotential (time-varying: non tidal) IERS Conventions 2010 [41]
Third-body JPL DE-403 [46]
Relativistic corrections Parameterized post-Newtonian [40, 47]
Direct solar radiation pressure Cannonball [38]
Earth albedo Knocke-Rubincam [48]
Earth-Yarkovsky Rubincam [49-51]
Neutral drag JR-71/MSIS-86 [52, 53]
Spin LASSOS [54]
Stations position ITRF2008,/2014 [55, 56]
Ocean loading Schernek and GOT99.2 tides [38, 45]
Earth Rotation Parameters IERS EOP C04 [57]
Nutation IAU 2000 [58]
Precession [AU 2000 [59]




Measurement and constraint

In our analysis:

e we concentrated upon the yearly oscillation of the longitude (w + M) of the LAGEOS Il satellite

* as gravitationally preferred rest frame we consider that of the cosmic microwave background radiation

* w represents the speed of the Sun with respect to this reference frame with orientation given by the
following ecliptic coordinates (Apg, Bpr):

. 368 n 2 km /1PF - 171055
WEIEEATT B = —11°.13
aq Gm,m,y
L, = ——Z v9 - v} 0 —
a+b
a, GMgmg
Lalz— (V@+W)'(vs+v@+W)

2¢c% 1o
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From Lagrange’s perturbative equations we are able to extract the perturbative effect of a possible PFE on the rate of the
argument of pericenter and on the rate of the mean anomaly of the satellite:

dow V1 —e20R coti OR —
dt ~ na’e de na2vJ1 — e2 0i R represents the perturbing funtion
— (a,e,i,Q,w, M) are the keplerian elements GMe
dM 2 0R 1- e? 0R n represents the satellite mean motion: n= |—3
dt nada na2e de -
Earth mean motion:
We finally obtain: l annual frequency

wv
c2

® cos Bpr sin(ngt — Apg) + -

If PFEs exist, the quantity (a) + M)a must be present in the residuals of the two elements obtained from the POD.
1

(@ + M)al = —a;2n
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Procedure in the time domain to extract the constraint in the PPN parameter a.,:

1. Estimate from the POD the satellite state-vector for each arc

2. Obtain from the state-vectors the residuals in the rate of the orbital elements: @ and M

3. Build from these residuals the gravitational observable: & + M

4. Remove from the observable the predictions of the unmodeled relativistic precessions

5. Apply a homodyne detection to these data at the expected frequency (the annual one) for the effect
described by the o, parameter and linked to the existence of the PFE due to the cosmic microwave
background radiation

6. Apply a low-pass filter to the data

7. Calculate the mean from this last operation and from this mean, suitably renormalized, extract the value

of the PPN parameter a,

. %%
(o + M)a1 = —a.2n c2® cos Bpr sin(ngt — App) + -+ = a1 K sin(ngt — Apg) + -

WV@
K=-2n p cos Bpr
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Measurement and constraint

Residuals in the two observables after the POD

Pericenter rate residuals
i Mean anomaly rate residuals | 7
| |' |
B | 4
0 2000 4000 G000 8000 10000 12000
Time [MJD]

-

SafoR-5

Relativistic precessions in the two observables

Rate (mas/yr) LAGEOS LAGEOS II LARES

DSchw +3270.78 +3352.58 +10,110.15
WLy +31.23 —57.33 —124.53
Hfr -3.26 +2.85 —23.38

st ~0.36 +0.16 ~2.65

Mg —3278.75 —3352.26 -10,110.14

M, rel -0.92 +0.15 -6.71

—3278.75 —3352.11 ~10,116.85

dow (V1 —e?0R coti  OR
dt nae de / ng2VJ1 — e2 0i
dM
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Lock-in analysis

Wv@

((Jo + M)al = a1K sin(ngt — Apg) + -+ K = —ch—ZCOSﬁPF

sin(ngt — App) - (w + M)res = a4 K(sin(ngt — App))? + -

Lock-in analysis, in this case more properly a homodyne analysis (phase sensitive detection), is mathematically based on
Werner's trigonometric formulas:

sina sinf = %(COS(C{ — B) — cos(a + B))

sina cosf = %(sin(cx — B) + sin(a + B))

sinasina = 5 (1 — cos(2a))

If a=B, as in our case, a part of the signal goes in continuous (DC) and a part at twice the annual frequency.




Observable
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Analysis to fix the parameters of the low-pass filter:— -
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SafoR-5

integration time

* timespan for the averaging

Spectra of the different signals considered
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Measurement and constraint

. .
Loc k-l n a n a IVS I S : PHASE LOCK-IN f0=365.2564 fas=0.91246 t0 =3000 ord=3 int={2000-9000) (day)
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Measurement and constraint SaToR-6-

Scatter plot of the value of the PPN parameter a, after the lock-in demodulation as the frequency and signal
phase vary and a, behavior as a function of the phase.
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Measurement and constraint

Preliminary error budget for the systematic errors:

1. Gravitational field (quadrupole)
2. Solid tides
3. Ocean tides
4. Non-Gravitational Perturbations:
%107
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Q
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Ocean —0.0745 +0.0276 +176°.82
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Result for the PPN parameter a, and constraint to alternative theories of gravitation:

a; = (3+3)x107°

This result represents the first constraint in a, in the field of the Earth based on a pure
gravitational experiment.

The result obtained, although preliminary, confirms the validity of the LLI for gravitation

and strongly constrains possible PFEs and, consequently, vector-tensor theories of gravity,
at least in the WFSM limit of GR.
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Comparison with the literature:

la; =+3x1075+3x105 |  [with SLR data from LAGEOS Il longitude, 2023/2024 |

—7%Xx107°+9x10°° With LLR data from the oscillations of the Earth-Moon distance, 2008

K
[N
Il

@; = —4%x10"°+4x107° From binary Pulsar data, 2012

Miiller J, Williams J G and Turyshev S G, 2008. Lunar laser ranging contributions to relativity and geodesy. Lasers, Clocks and
Drag-Free Control: Exploration of Relativistic Gravity in Space (Astrophysics and Space Science Library vol 349) ed H Dittus, C
Lammerzahl and S G Turyshev p 457.

J. Miiller, K. Nordtvedt, D. Vokrouhlicky, Improved constraint on the a, PPN parameter from lunar motion. Phys. Rev. D, Vol. 54,
No 10, 1996.

L. Shao, N. Wex, New tests of Local Lorentz invariance of gravity with small-eccentricity binary pulsars. Class. Quantum Grav. 29,
2012.




Conclusions SaFoR-5-

Local Lorentz Invariance represents one of the cornerstones of both the standard model of field and particle physics
and the standard model of gravitation, i.e. of GR. In a sense, LLI represents our current deepest understanding of the
nature of space and time. So, why test LLI?

A strong motivation in our work is to search for the possible existence (or at least evidence) of new physics beyond GR.
We mentioned the possible existence of additional fields that come into play in mediating the gravitational interaction
and that could couple to matter in such a way, in some cases, that they violate Lorentz invariance.

Therefore, in this work we have presented and discussed a test of LLI, and its possible violation, in the gravitational
sector by exploiting the possible existence of PFE:

The result is therefore fully

aq = (3 + 3) X 10_5 compatible with zero, in
agreement with GR

The result we have obtained further constrains the possible existence of a preferred frame for local gravitational
physics and, consequently, that of theories of gravitation described, in addition to the metric tensor of GR, by the
presence of additional fields of tensor and/or vector nature.

Consequently, this new result represents a first constraint on LLI through a weak-field gravitation experiment with a
satellite orbiting the Earth.
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Satellite Laser Ranging

The geodetic satellites are tracked with very high accuracy through
the Satellite Laser Ranging (SLR) technique.

SLR allows to determine the round-trip time between Earth-
bound laser Stations and orbiting passive (and non-passive)
satellites.

The time series of range measurements are then a record of the
motions of both the end points: the satellite and the station.

Thanks to the accurate modelling of both gravitational and non-
gravitational perturbations on the orbit of these satellites, and
considering a less than 1 cm range accuracy, we are able to
determine their Keplerian elements with about the same accuracy.

The precision of the measurement depends mainly on the laser pulse width,
about 1 x1019s—3x101s

Matera (ASI-CGS)

Millimeter Accuracy Laser Ranging
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Satellite Laser Ranging SaFoR-5:

The ILRS (International Laser Ranging Service) supports laser ranging measurements to geodetic, remote
sensing, navigation and experimental satellites equipped with retroreflector arrays as well as to reflectors

on the Moon.

ilrs.gsfc.nasa.gov




Precise Orbit Determination 8-Fon 0.

Precise Orbit Determination (POD) has the goal of accurately determining the position and velocity vectors
of an orbiting satellite.

To achieve this objective, precise observations of the satellite’s motion and a dynamic model of the orbit as
accurate as possible are necessary.

Orbits:
With these two ingredients it is possible to compute

the observable to be minimized in a least squares
process.

&55 = f(%,t,@) Differential equation

{55 e R? State vector (position and velocity, ...)

a € R™ Models dynamic parameters (C,,, CT, ...)

g‘c’(to =X, € ]Rf’) Initial condition at a given epoch: ¢ = 6+...

In the case of SLR, this observable is a quadratic
function of the range residuals R: X = %(t, %o, @) General solution for the orbits (integral flow)

Observations:
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C = C(f, t, é) Observation function, ﬁ € R™ kinematic parameters
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Measurement and constraint
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