23th International Workshop on Laser Ranging (IWLR)

Estimation of geocenter motion and the degree-2 gravitational harmonics from LAGEOS data

Luping Zhong

Institute of Seismology, Wuhan, China Earthquake Administration

Xiancai Zou

School of Geodesy and Geomatics, Wuhan University

Kunming, China, 21/10/2024

Outline

1 Background and motivation

2 Method, software and data

3 Results: comparison and discussion

- 3 ---

1. Background and motivation

Geocenter motion

- Geocenter motion is defined as the vector from ITRF origin (center of figure, CF) to ITRS origin (center of mass, CM) (IERS Conventions 2010)
- It's one of keys to realize geocentric reference frame with mm precision
- Only several millimeters in any component, it's a challenge to determine geocenter motion precisely
- Geocenter motion solutions based on different data and method differ from each other to some extent

1. Background and motivation

Degree-2 gravitational harmonics

- C_{20} is related to the Earth's dynamic oblateness, but cannot be recovered accurately by GRACE and should be replaced with the SLR solution
- C₂₁ and S₂₁ are related to the Earth's principal figure axis, C₂₂ and S₂₂ are related to the eccentricity at the Earth's equator
- reflects the motion process and mass change of various components of the earth system on the long wave scale
- SLR has advantages in determining both geocenter motion and low degree gravitational harmonics

> Adopt the Kinematic method described in Cheng Minkang et al., 2013

Geocenter motion and gravitational spherical harmonic coefficients are estimated during POD process, together with some other parameters used to absorb errors

- 5 ---

- Software developed by the research group of school of geodesy and geomatics of Wuhan university
- Observation types: SLR/VLBI/GNSS/GRACE(KBRR)/GOCE(SGG)
- Parameter estimation: the Earth gravity field model(Stokes coefficients), satellite orbit(initial state, dynamic parameters), EOP, Station coordinate, geocenter motion, station range bias, etc.
- Linux/UNIX, Fortran, Shell script, MPI/OpenMP
- Being developed, refined and expanded

SLR data processing and satellite dynamic modelling

Satellites	LAGEOS-1 and LAGEOS-2	Geopotential	EGM2008, up to degree 30
Observations	SLR Normal Points	Third-body	JPL DE405
Troposphere delay	Mendes-Pavlis 2004	Tidal forces	solid earth tides, ocean tides (EOT11a),
Satellite center of mass	Station related		atmosphere tides, pole tides (IERS
Relativity	Light time corrections		Conventions 2010)
Elevation angle cutoff	none	Non-tidal forces	AOD1B RL05
Data editing	3σ , and threshold of 15cm	Relativity	Schwarzschild, Lense-Thirring, de Sitter
Station coordinate	SLRF2014	Solar radiation	Cannon ball model, Cr=1.13
Station eccentricities displacement	Ecc file (200420 version)	Earth radiation	albedo and infrared, Knock model, Cr=1.13
Station time and range	Data Handling File	Air drag	JB2008 atmospheric density model, Cd=4.0
bias		Numerical	Arc length (orbits): 7 days
Station tidal	Solid earth tides, ocean tides	Integration	
displacement	(FES2004), atmosphere tides, pole tides (IERS Conventions 2010)	EOP	EOP Bulletin B C04_14

— 7 —

Parameter estimation strategy

Adjustment method	Variance components estimation		
Orbit	Initial position and velocity (7d arc)		
	Empirical accelerations: T0 + Tsin(1cpr) + Ncos(1cpr), one set per 7d arc		
	Geopotential harmonics: up to degree and order 3, one set per month		
Stations	Range bias for every station, one set per 7d arc		
Geocenter motion	One set per month		

Geocenter motion(GCM)

Solution	Num of Sats	method
WHU	2	kinematic
CSR	5	kinematic
AIUB	9	Network shift
ITRF14	4	Network shift
TN13	2	GRACE+OBP

WHU solutions agree with CSR solutions best, with the accuracy of

- -2.42 ± 2.05 mm (X)
- -1.29 ± 2.48 mm (Y)
- 1.24 \pm 5.27mm (Z)

_ 9 _

GCM time series fitting with linear and annual model

		$X_{CM} = \overline{X}$	$\overline{X} + \dot{X} \cdot (t - t)$	$-T_0$) + A c	$os(2\pi(t$	$(-T_0) - \phi$)	
-		X		Y		Z		
	Solution	amp(cm)	phase(doy)	amp	phase	amp	phase	Data and method
– Annual variation	WHU	1.1 ± 0.3	31 ± 17	3.1 ± 0.3	339±5	4.4 ± 0.8	21 ± 11	SLR, Kinematic
	CSR	2.9 ± 0.4	35 ± 3	2.6 ± 0.2	306 ± 2	4.2 ± 0.3	33 ± 2	SLR, Kinematic
	AIUB	2.2	32	2.2	328	3.7	71	SLR, network shift
	ITRF2014	2.6 ± 0.4	46±3	2.9 ± 0.1	320 ± 2	5.7 ± 0.2	28 ± 2	SLR, network shift
_	TN-13	2.5 ± 0.1	57 ± 3	2.6 ± 0.1	334±2	3.0 ± 0.2	64 ± 3	GRACE+OBP
-	Solution	X (m	m/yr)	Y (mm/yr)	Z (m	m/yr)	Data	a and method
– Long-term rate	WHU	0.35 =	± 0.08	0.08 ± 0.08	0.45	± 0.21	SLI	R, Kinematic
	Metivier, 2010	0.1	-0.3	0.1-0.3	0.3	-0.8	Geophy	sical fluid model
	CSR	0.	03	0.07	-0	.12	SLI	R, Kinematic
	AIUB	0.	52	0.14	-0	.35	SLR,	network shift

> Degree 2 gravitational harmonic coefficient: C₂₀

Solution	MEAN(E-12)	STD(E-11)
SLR-AIUB	8.98	4.47
SLR-CSR	8.98	4.72
SLR-RL06	41.86	4.36
TN11	-6.00	5.55
TN14	22.17	4.44

Degree 2 gravitational harmonic coefficient: C₂₁/ S₂₁/C₂₂/ S₂₂

-1.5

-2 2010

2012

2014

Year

2016

2018

2020

> Observation residuals (OMC)

Omc statistics(cm)

Satellite	MEAN	RMS
LAGEOS 1	-0.03	1.57
LAGEOS 2	0.03	1.47

> Effect of the estimation of station range bias on GCM

Difference between All-Fix and All-Est

- $1.05 \pm 2.46 \text{ mm}(X)$
- $0.73 \pm 1.81 \text{ mm}(Y)$
- $-1.53 \pm 5.78 \text{ mm} (\text{Z})$

To estimate range bias (Rb) for every station is proposed, which can improve the accuracy of geocentric motion Z component by 25%

> Range bias is an important index to evaluate the long-term stability of station

— 15 —

station 7840

station 8834

station 7308

> Station range bias

station 7403

found.

The annual average of the estimated station range bias is systematically

positive. For more than 70% of the stations, the value are positive.

It indicates that SLR system may still

have systematic errors that has not been

annual average of station range bias

- ➢ Geocenter motion and degree-2 gravitational harmonics can be well estimated from LAGEOS-1 and LAGEOS-2 satellites data together with other orbital parameters;
- Precise data processing, satellite dynamic modeling, and parameter estimation strategy are the keys. The estimation of geocenter motion and degree-2 gravitational harmonics from LAGEOS data are comparable with solutions using more SLR satellites;
- It's recommended that station range bias for every station be estimated, which improves the accuracy of geocentric motion Z component by 25%. The estimated Range bias values are systematically positive, indicating SLR system may still have systematic errors that has not been found.

23th International Workshop on Laser Ranging (IWLR)

Thank you!