



WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

# Modeling range corrections from SLR residuals to active Low Earth Orbiters – insights from study based on over 10 satellites and 20 years of data

Dariusz Strugarek, Krzysztof Sośnica



Institute of Geodesy and Geoinformatics, UPWr, Wrocław, Poland

## active Low Earth Orbiters (LEOs)

- variety of mission objectives: gravity field, altimetry, magnetic field, temperature, wind speed, Earth's core dynamics, Earth's surface mapping (DEM)
- different altitudes (260-1500 km), shapes, payload, orbit
- space geodetic techniques co-location: GNSS, SLR, DORIS
- current main contribution of SLR to LEOs: validation of precise orbit (POD) products derived by GNSS/DORIS
- satellite specific modeling requirements (mass change, LRA offsets/orientation)







### **Motivation**

- 1) Most of normal points (NPs) provided by ILRS consider active Low Earth Orbiters (e.g. Swarm, GRACE, Sentinel-3 missions)
- 2) ILRS does not provide official range correction products for LEOs
- 3) Different approaches for modeling of systematic errors in SLR-based validation of LEO precise orbit products
- 4) Update of products (ITRF2020, CM corrections, DHF, POD of LEOs)

#### **Overview of approaches for bias handling in active LEO orbit validation**

- 1) correction types: range biases // time biases // troposphere biases // other
- 2) type: station-satellite // station-satellite\_group
- 3) scheme: SLR-based validation of LEO orbits // SLR(SLR+GNSS)-based POD of LEOs // in pre-processing and added as a priori
- 4) time resolutions: daily // weekly // monthly // yearly
- 5) **number of parameters:** only range biases // range biases + station coordinates // together with other parameters
- 6) grouping of stations for analysis: high-performing(core) stations // all stations // detector-depending groups // clustering of stations
- 7) + different outlier rejection, elevation angle threshholds

For details please see, e.g.: Arnold et al. 2019; Calliess et al. 2024; Exertier et al. 2017, 2018; Montenbruck et al. 2018; Li et al. 2023, 2024; van den IJssel et al. 2015; Saquet et al. 2024; Strugarek et al. 2019, 2021, 2022; Zajdel et al. 2023; Zhang et al. 2021; GMV reports;

#### **ILRS recommendations for satellites other than LAGEOS/Etalon**

#### 1) DataHandlingFile(DHF)240213:

If an ITRF2020/SLRF2020 user performs POD on any satellites other than for LAGEOS 1/2 and Etalon 1/2 for which we have specific Model Bias values, a **station-specific range bias must be pre-applied, calculated as the mean of the two biases for the LAGEOS and LAGEOS-2 satellites**. This bias should be used only as an a priori value since additional satellite-specific errors might still be present (e.g. CoM errors, LRA offset/orientation errors).

#### 2) M. Bloßfeld et al. (EGU, 2024):

- ITRF2020: use PSD and periodic corrections (CM),
- use of CoM corrections and the most recent DHF
- apply long term LA-1 mean range bias (pragmatic approach) or
- mean LA-1/2 long term-RBs as a priori and estimate (mean long-term) RBs

### Range bias (RB) corrections from DHF240213



#### Mean RBs LAG1 and LAG2 [mm]

#### **RB difference between LAG1 and LAG2 [mm]**



+MODEL/RANGE\_BIAS section only

# **Data and processing solutions**

#### 12 LEO satellites: GRACE-A/B/FO1/FO2, Swarm-A/B/C, CHAMP, TanDEM-X, TerraSAR-X, Sentinel-3A/B

GNSS POD products provided by IFG University of Graz - Reduced-dynamic solution based on the raw observation approach (details: Suesser-Rechberger B, et al. 2022) S3A/B orbits provided by TU DELFT, ESA – Reduced-dynamic solution (details: van den IJssel J, et al. 2015)

**SLR data:** Normal Points (crd ,.npt , .np2), station satellite info, processing models provided by ILRS, **(CDDIS, EDC TUM)** ITRF2020 + PSD + CM, satellite CoM, LRA models

**SLR orbit validation of LEOs with RB modeling** (all/high performing stations)



Suesser-Rechberger, et al.(2022). Improved precise kinematic LEO orbits based on the raw observation approach. Adv in Space Res, 69(10), 3559-3570. van den IJssel J, et al. (2015) Precise science orbits for the Swarm satellite constellation. Adv Space Res 56(6):1042–1055.

# **Data and processing solutions**

#### 12 LEO satellites: GRACE-A/B/FO1/FO2, Swarm-A/B/C, CHAMP, TanDEM-X, TerraSAR-X, Sentinel-3A/B

GNSS POD products provided by IFG University of Graz - Reduced-dynamic solution based on the raw observation approach (details: Suesser-Rechberger B, et al. 2022) S3A/B orbits provided by TU DELFT, ESA – Reduced-dynamic solution (details: van den IJssel J, et al. 2015)

**SLR data:** Normal Points (crd ,.npt , .np2), station satellite info, processing models provided by ILRS, **(CDDIS, EDC TUM)** ITRF2020 + PSD + CM, satellite CoM, LRA models

**SLR orbit validation of LEOs with bias modeling** (all/high performing stations)

Tested solutions – residual analysis:

- (0) no modeling of RB
- (1) a priori mean RB from LAG1/2 (DHF)
- (2) a priori mean RB from LAG1/2 (DHF)+ est. daily RB = est. daily RB
- (3) a priori 30-day mean RB per station\_LEO\_group



# (0) Unmodeled residuals

- Period 2002.0-2023.1
- 12 satellites, all stations
- SLR residuals of GNSS POD products
- ~4 000 000 NPs

Offset of residuals at range of +/- 0-6 mm, st.dev of 17-25 **mm** (all stations)



## (0) Unmodeled residuals

12 satellites, highperforming stations (12): 7090, 7105, 7501, 7810, 7825, 7827, 7839, 7840, 7841, 7941, 7119, 8834

Offset of residuals at range of +/- 0-6 mm, st.dev. 10-17mm

St. dev lower by 1-7 mm!



# (1) a priori mean RBs from LAG1/2 (DHF)

12 satellites, all stations

Offsets of residuals at range of +/- 0-7 mm, st.dev 17-28mm

St. dev. increased by a few **mm!** for most of satellites (slighly reduced by 1-3 mm only for S3B, GRB, TDX) w.r.t (0)



## (2) a priori mean RB from LAG1/2 (DHF)+est. daily RB = <u>est. daily RB</u>



Identical solutions, and estimated range biases – identical validation results

## (2) a priori mean RB from LAG1/2 (DHF)+est. daily RB = est. daily RB

#### Mean RBs LAG1 and LAG2 [mm]



#### **GRACE-B** daily RBs [mm]



(2) a priori mean RB from LAG1/2 (DHF)+est. daily RB = est. daily RB

12 satellites, all stations

St. dev residuals at range of 10-19mm

St. dev. reduced by 2-7 mm and no offset! w.r.t (0)



#### (2) a priori mean RB from LAG1/2 (DHF)+est. daily RB = <u>est. daily RB</u>

**12 satellites, highperforming stations (12):** 7090, 7105, 7501, 7810, 7825, 7827, 7839, 7840, 7841, 7941, 7119, 8834

St. dev residuals at range of 7-10 mm (GR,SWM,S3)

St. dev. reduced by 2-5 mm and no offset! w.r.t the same group and (0) SLR residuals (mean+st.dev) [mm]



## (3) a priori 30-day mean RB per station per 12LEOs group

#### Mean RBs LAG1 and LAG2 [mm]







+MODEL/RANGE\_BIAS section only

## (3) a priori 30-day mean rbias per station per 12LEOs group

12 satellites, all stations

St. dev. increased by a few mm (~2-5mm)! w.r.t (0)

More sat. groups needed? **To long period for RBs?** 



#### **Summary and insights**

23 RD INTERNATIONAL WORKSHOP ON LASER RANGING (IWLR) Oct.20~26, 2024 Kunming, China

(1) Daily station-satellite RBs reduce offsets, as well as st.dev. of SLR residuals by
2-7mm to the level of 7-10mm (GR, Swm, S3), but large no. of parameters
(2) No need of a priori values. A priori mean RB of LAG1/2 (DHF) + daily est. RB = daily est. RB. Identical effect on SLR validation
(3) 30-day mean RBs station-LEO or a priori mean RBs of LAG1/2 (DHF) are insufficient – decreased consistency between SLR and POD products
(4) More tests: retroreflector dependent groups / 7-day period / more LEOs Same or different scheme for determination of parameters?

23 RD INTERNATIONAL WORKSHOP ON LASER RANGING (IWLR) Oct.20~26, 2024 Kunming, China





IGiG

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Institute of Geodesy and Geoinformatics, UPWr, Wrocław Poland

# Thank you for your attention!

dariusz.strugarek@upwr.edu.pl

The study is supported by the National Science Centre, Poland Grant UMO-2022/45/N/ST10/02221. The ILRS is acknowledged for providing SLR Data. TUG and ESA are acknowledged for providing GNSS LEO POD products. Many thanks to Filip Gałdyn (UPWr) for sharing his computing resources

# **Bibliography**

(1) Bloßfeld, M., et al. (2024) Application of ITRS 2020 realizations for the SLR-based POD of selected geodetic and Earth-observing satellites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5385,

(2) ILRS\_Data\_Handling\_File\_2024.02.13.snx, https://edc.dgfi.tum.de/en/ilrs-ac/

(3) Montenbruck O, Hackel S, van den IJssel J, Arnold D (2018) Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking. GPS Solut 22:79.

(4) Arnold D, Montenbruck O, Hackel S, Sośnica K (2019) Satellite laser ranging to low Earth orbiters: orbit and network validation. J Geod 93(11):2315–2334.
(5) Strugarek D et al. (2021) Detector-specific issues in Satellite Laser Ranging to Swarm-A/B/C satellites. Measurement 182:109786.

(6) Strugarek D., Sośnica K., Arnold D., Jäggi A., Zajdel R., Bury G. (2022) Satellite laser ranging to GNSS-based Swarm orbits with handling of systematic errors GPS Solutions, Vol. 26 No. 104, pp. 1-14

(7) van den IJssel J, Encarnação J, Doornbos E, Visser P (2015) Precise science orbits for the Swarm satellite constellation. Adv Space Res 56(6):1042–1055. https:// doi. org/ 10. 1016/j. asr. 2015. 06. 002

(8) Zajdel, R. et al. (2023) Combination and SLR validation of IGS Repro3 orbits for ITRF2020. J Geod 97, 87. DOI:10.1007/s00190-023-01777-3

(9) E. Saquet, A. Couhert, H. Peter, et al. Millimeter accuracy SLR bias determination using independent multi-LEO DORIS and GPS-based precise orbits Adv. Space Res., 73 (1) (2024), pp. 304-316

(10) Strugarek D., Sośnica K., Jäggi A. (2019) Characteristics of GOCE orbits based on Satellite Laser Ranging, Advances in Space Research, Vol. 63 No. 1, pp. 417-431

(11) Li, X., Fu, Y., Zhang, K. et al. Improving multiple LEO combination for SLR-based geodetic parameters determination using variance component estimation. J Geod 98, 71 (2024)

(12) Li, X.; Liu, C.; Yuan, Y.; Zhang, K. Current Status and Challenges of BDS Satellite Precise Orbit Products: From a View of Independent SLR Validation. Remote Sens. 2023, 15, 2782

(13) Zhang, K., Li, X., Wu, J., Yuan, Y., Li, X., Zhang, X., & Zhang, W. (2021). Precise orbit determination for LEO satellites with ambiguity resolution: Improvement and comparison. Journal of Geophysical Research: Solid Earth, 126, e2021JB022491

(14) Suesser-Rechberger, et al..(2022). Improved precise kinematic LEO orbits based on the raw observation approach. Advances in Space Research, 69(10), 3559-3570.

(15) Exertier, P. et al. (2017). Time biases in laser ranging observations: a concerning issue of space geodesy. Adv. Space Res. 60(5), 948–968.

(16) Exertier, P., et al. (2018) Time and laser ranging: a window of opportunity for geodesy, navigation, and metology. J. Geod...

(17) Mayer-Guerr, T., et al. (2021). GROOPS: A software toolkit for gravity field recovery and GNSS processing. Computers & Geosciences, 104864.

(18) Dach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS Software Version 5.2. User manual. University of Bern, Bern Open Publishing.

#### **Future plans**

23 RD INTERNATIONAL WORKSHOP ON LASER RANGING (IWLR) Oct.20~26, 2024 Kunming, China

- include more LEOs in the processing, e.g. Sentinel-6, Jason-1/2/3, (calculations for Sentinels-3 – updated POD products from TUG)
- 2) compare results with solutions based on other POD products, e.g. ESA
- 3) retroreflector dependent analysis on range corrections
- 4) extend period of analysis, resolving data gaps

#### **Range bias corrections from DHF240213**



#### Mean range bias LAG1 and LAG2 [mm]



Mean range bias Eta1 and Eta2 [mm]

Yarragadee (7090), Greenbelt (7105), Haleakala (7119), Hartebeesthoek (7501), Zimmerwald (7810), Graz (7839), Herstmonceux (7840), Potsdam (7841), Matera (7941), Wettzell (8834). Wettzell (7827) Mt Stromlo (7825)

Kunming (7819),(7820)

#### KUNMING station (7819, 7820)



# Methods of reducing systematic effects in SLR residuals



• **Range biases** (constant corrections to modeled ranges):

- from each satellite pass analysis to spherical satellites (Otsubo et al. 2019)
- weekly station and station-satellite dependent to LAGEOS-1/2 (Appleby et al. 2016, Luceri et al.. 2019, Rodriguez et al. 2019)
- 1-year station dependent to LEOs with station coordinate corrections (Arnold et al. 2019) / orbit offsets / time biases (Arnold et al. 2022)
- 1-year station-satellite dependent to GNSS (Bury et al. 2021)
- **Troposphere delay** (zenith angle dependent corrections):
- 10-day tropospheric biases for LAGEOS-1/2 (Drożdżewski et al. 2021)
- tropospheric biases with N and E horizontal gradients (Drożdżewski et al. 2019)
- tropospheric bias (estimated using partial derivatives of the dry part of the Global Mapping Function, Böhm et al. 2006)

| Absolute maximum of the residuals       | 0.15 | m  |
|-----------------------------------------|------|----|
| Maximum overall sigma                   | 20.0 | mm |
| Multiplication factor for overall sigma | 2.5  |    |

#### (4) troposphere bias (zenit correction)

12 satellites, all stations

St. dev residuals at range of 10-19mm

St. dev. reduced by 2-7 mm and no offset! w.r.t (0)



#### (4) troposphere bias (up correction)

**12 satellites, highperforming stations (12):** 7090, 7105, 7501, 7810, 7825, 7827, 7839, 7840, 7841, 7941, 7119, 8834

St. dev residuals at range of 7-10 mm

St. dev. reduced by 2-5 mm and no offset! w.r.t the same group and (0)

> SLR residuals (mean+st.dev) [mm]



# Range bias corrections from 30 day mean





## (2) a priori mean RB from LAG1/2 (DHF)+est. daily RB = <u>est. daily RB</u>





## (2) a priori mean RB from LAG1/2 (DHF)+est. daily RB = <u>est. daily RB</u>

#### Mean RBs LAG1 and LAG2 [mm]







