

Large-Area High-Speed SNSPDs for Laser Ranging

<u>Hao Wang</u>, Qi Chen, La-Bao Zhang, Pei-Heng Wu Research Institute of Superconductor Electronics, Nanjing University (RISE@NJU) @23rd International Workshop on Laser Ranging (IWLR) 2024-10-25

SNSPDs: superconductor nanowire single-photon detectors

OUTLINE

- **1. Introduction of SNSPDs**
- 2. Large-area and High-speed SNSPDs
- **3. Application of SNSPDs in Laser Ranging**
- **4. Summary and Perspective**

Superconductor

Definition

A superconductor is a type of material that conducts electricity with zero resistance (or energy loss) when cooled to a certain temperature.

superconductivity transition temperature, T_c

H. K. Onnes, Commun. Phys. Lab. 12, 120, (1911)

Superconductor Changes Our World

Birth of SNSPDs

Kadin et al. PRL, 1990.

Single photon can **destroy the superconductivity** of a 2D superconductor. Hotspot can be formed in 1D superconducting NbN once absorbing a single photon

Gupta et al. IEEE TAS, 1999.

Substrate

hν

Gol'tsman et al. APL, 2001.

First **SNSPD** in the world

Detection Process of SNSPDs

SNSPDs show the best comprehensive performance at IR band.

- Forming pulse signals
- 6. Recovering to superconducting state. 6

OUTLINE

1. Introduction of SNSPDs

2. Large-area and High-speed SNSPDs

3. Application of SNSPDs in Laser Ranging

4. Summary and Perspective

Laser Ranging

Performance indicators

Contradictory between Area and Speed

Challenge: Synchronizing large area and high speed of SNSPD

Latest status of high-speed SNSPD

Current gigahertz (GHz) SNSPDs remain two issues:

- 1) Single-mode fiber is **incompatible** with most large-aperture telescopes,
- 2) Uneven distribution of nanowires limits the system performance.

Our Lab: from fundamentals to applications

Nano-fabrication

Device Structure Design

• On-chip series resistors

• Array with 4 pixels:

Rotation-symmetric structure

• 4 nanowires:

Concentric-circular parallel structure

- A large detection area of ø60 μm
 Coupling with ø200 μm MMF
- ✓ decreasing L_k by 16 times

Increase the detection speed

Suppressing electrical crosstalk & Improving signal-noise ratio

Device fabrication based on layout design

Uniform superconductivity of pixels

All the four pixels exhibit almost same I-V curves, proving the excellent high quality and uniformity of nanowires.

Realizing Large-area and High-speed SNSPD

Coupling with ø200 µm multimode fiber, having a total SDE > 50% at 1064 nm

Total count rate of four channels reaches ~147 Mcps@3dB DE drop

Institution	Year	Ν	Α (μm²)	f(CR@3 dB drop) (Gcps)	SDE(f)	P=(A·f)/N·SDE(f) (µm² Gcps)
SIMIT	2019	16	177	0.93	31%	3.2
JPL	2022	32	450	1.5	39%	8.2
UNIGE	2023	14	189	1.5	45%	9.1
NJU	2023	4	2828	0.147	24%	24.9

Highest comprehensive performance among the SNSPDs in the past 5 yrs.

More details refer to Appl. Phys. Lett. 123, 142601 (2023)

OUTLINE

- **1. Introduction of SNSPDs**
- 2. Large-area and High-speed SNSPDs
- **3. Application of SNSPDs in Laser Ranging**
- **4. Summary and Perspective**

Daytime Satellite/Debris Ranging

Target	Beaconc Satellite	Beidou Satellite	No.22803 Space Debris	Glonass134 Navigation Satellite	Hy2a Ranging Satellite	
Height	~1,000 km	~36,000 km	~850 km	~20,000 km	~1,000 km	
Condition	Night			Daytime		

✓ Overcoming strong background noise and promoting all-day satellite ranging technology Cooperated with Yunnan Observatories, etc.

Moon-to-Earth Ranging

Reflector	Number (half year)		
APOLLO 15	235		
APOLLO 14	20		
APOLLO 11	9		
LUNA 17	25		
LUNAR 21	21		
Standard point/ Total echo point	<mark>310</mark> /17655		

- ✓ Applying SNSPD for MER for the first time;
- ✓ Achieving all 5 reflectors on the moon;
- ✓ Effective even at full-moon condition.

Cooperated with TianQin Center, etc.

Soft target monitoring

All-day SNSPD-based laser ranging system can dynamically monitor clouds tens of kilometers away.

Superconductor Science and Technology 34, 034005, (2021)

OUTLINE

- **1. Introduction of SNSPDs**
- 2. Large-area and High-speed SNSPDs
- **3. Application of SNSPDs in Laser Ranging**
- **4. Summary and Perspective**

Summary and Perspective

✓ Large-area high-speed SNSPDs are developed.

Synergistic structure design overcomes the contradictory between area and speed, realizing the highest comprehensive performance (24.9)

✓ As-developed SNSPDs have been successfully applied in laser ranging.

Satellite/debris detection Moon-to-earth ranging Soft target monitoring

✓ Fundamental research are ongoing toward advancing SNSPDs.

Broader response band

Larger pixel scale

Extreme signal-noise ratio

Acknowledgment

Contributions from all the members in ZLB-lab and RISE, and other institutes.

Fundings: Innovation Program for Quantum Science and Technology,

National Natural Science Foundation of China,

Natural Science Foundation of Jiangsu Province, etc.

Thanks for your attention!

in The

Nanjing University, Xianlin Campus

ter Street Street St

Single-photon detectors (SPDs)

Definition

SPDs are ultra-sensitive devices that can detect and count individual photons.

Our achievements in SNSPDs

Time (ns)

Readout optimization

• The effect of DiAC

- Traditional circuit (TC)
- Discharge acceleration circuit (DiAC)

Thermal crosstalk analyses

• $I_{\rm B} = 98\% I_{\rm SW}$, thermal crosstalk~0.02

• $I_{\rm B} = 90\% I_{\rm SW}$, thermal crosstalk~1.5×10⁻⁴ (negligible)

Towards higher speed in MMF-SNSPDs

- ✓ 16 NbN nanowires in fully wound structure cover an area of 22×22 µm², which can be coupled with a 62.6 µm multimode fiber (MMF)
- On-chip series Ti resistors: suppress the electrical crosstalk and accelerate the recovery of the detector

High & Uniform Detection efficiency

✓ The intertwined structure alleviates the current crowding effect at the corners

Quantum	Detection	Double-lenses module	Fiber	System detection
efficiency	efficiency	transmission	transmission	efficiency
100%	87.6%	69.8%	85.5%	52.3%

High speed over GHz

Laser & Photonics Reviews (under review)

Ultra high speed SNSPD with fully wound structure

Photon number resolving

• Quantum detector tomography obtains the complete measurement matrix of the detector $P = l \times F \Pi$

Oltra high speed SNSPD with fully wound structure

 Modulation and demodulation board

• Modulation signal (yellow) and recovery signal (blue)

Signal transmission verification: Successfully detect and restore 6.6 GHz optical signal

Application of Arrayed PNR-SNSPD

Challenges in daytime LiDAR:

SYNC

MMF

system control &

data process

<u>minin</u>t

array SNSPDs

SYNC

Strong backscattering

Weak echo signal

laser

telescope

Measurement system

OBPF

2. All-day Atmospheric LiDAR

Discrete : noise Ch1 _[] : TTL Strong background noise Сһ№ –∭ ch1 ch2 ch3 ch4 Power Synthesizer mist, cloud **High Speed** Concentrated oūt Comparator mountain Time-domain

The coherent superposition output in time domain improves both the SNR and detection distance.

Zhang et al. Superconductor Science and Technology 2021, 34, 034005

PNR-enhanced measurement

Zhang et al. Superconductor Science and Technology 2021, 34, 034005